回到首页 返回首页
回到顶部 回到顶部
返回上一页 返回上一页

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏 中等

头像 驴友花雕 2021.12.12 1216 2

偶然心血来潮,想要做一个声音可视化的系列专题。这个专题的难度有点高,涉及面也比较广泛,相关的FFT和FHT等算法也相当复杂,不过还是打算从最简单的开始,实际动手做做试验,耐心尝试一下各种方案,逐步积累些有用的音乐频谱可视化的资料,也会争取成型一些实用好玩的音乐可视器项目。

 

造物记
【花雕动手做】有趣好玩的音乐可视化项目(01)---LED节奏灯
https://makelog.dfrobot.com.cn/article-311363.html
【花雕动手做】有趣好玩的音乐可视化项目(02)---OLED频谱灯
https://makelog.dfrobot.com.cn/article-311365.html
【花雕动手做】有趣好玩的音乐可视化项目(03)---RGB律动灯
https://makelog.dfrobot.com.cn/article-311366.html
【花雕动手做】有趣好玩的音乐可视化项目(04)---WS2812条灯
https://makelog.dfrobot.com.cn/article-311377.html
【花雕动手做】有趣好玩的音乐可视化项目(05)---WS2812柱跳灯
https://makelog.dfrobot.com.cn/article-311378.html
【花雕动手做】有趣好玩的音乐可视化项目(06)---点阵频谱灯 
https://makelog.dfrobot.com.cn/article-311379.html
【花雕动手做】有趣好玩的音乐可视化系列小项目(07)---大方格频谱灯
https://makelog.dfrobot.com.cn/article-311429.html
【花雕动手做】有趣好玩的音乐可视化系列小项目(08)---四位32段点阵屏
https://makelog.dfrobot.com.cn/article-311463.html

【花雕动手做】有趣好玩的音乐可视化系列小项目(09)---X Music Spectrum
https://makelog.dfrobot.com.cn/article-311482.html

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
https://makelog.dfrobot.com.cn/article-311491.html
【花雕动手做】有趣好玩的音乐可视化项目(11)---WS2812幻彩灯带
https://makelog.dfrobot.com.cn/article-311745.html
【花雕动手做】有趣好玩的音乐可视化项目(12)---米管快速节奏灯
https://makelog.dfrobot.com.cn/article-311746.html
【花雕动手做】有趣好玩的音乐可视化系列小项目(13)---有机棒立柱灯
https://makelog.dfrobot.com.cn/article-311759.html

 

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏

project-image
project-image

WS2812B主要特点
智能反接保护,电源反接不会损坏IC。
IC控制电路与LED点光源公用一个电源。
控制电路与RGB芯片集成在一个5050封装的元器件中,构成一个完整的外控像素点。
内置信号整形电路,任何一个像素点收到信号后经过波形整形再输出,保证线路波形畸变不会累加。
内置上电复位和掉电复位电路。
每个像素点的三基色颜色可实现256级亮度显示,完成16777216种颜色的全真色彩显示,扫描频率不低于400Hz/s。
串行级联接口,能通过一根信号线完成数据的接收与解码。
任意两点传传输距离在不超过5米时无需增加任何电路。
当刷新速率30帧/秒时,级联数不小于1024点。
数据发送速度可达800Kbps。
光的颜色高度一致,性价比高。

主要应用领域
LED全彩发光字灯串,LED全彩模组, LED全彩软灯条硬灯条,LED护栏管。
LED点光源,LED像素屏,LED异形屏,各种电子产品,电器设备跑马灯。

project-image

WS2812模块电原理图

project-image

MAX9814
是一款低成本高性能麦克风放大器,具有自动增益控制(AGC)和低噪声麦克风偏置。器件具有低噪声前端放大器、可变增益放大(VGA)、输出放大器、麦克风偏置电压发生器和AGC控制电路。
●自动增益控制(AGC)
●3种增益设置(40dB、50dB、60dB)
●可编程动作时间
●可编程动作和释放时间比
●电源电压范围2.7V~5.5V
●低THD:0.04% (典型值)
●低功耗关断模式
●内置2V低噪声麦克风偏置

project-image

搜索并安装Adafruit_NeoPixel库:

https://github.com/adafruit/Adafruit_NeoPixel

project-image

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏

项目之一:使用Adafruit_NeoPixel库的音乐可视化多彩节奏灯

实验开源代码

代码
/*
  【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
  项目之一:使用Adafruit_NeoPixel库的音乐可视化多彩节奏灯
*/

#include <Adafruit_NeoPixel.h>
#define MIC A0 // 麦克风与A0相连接
#define LED_PIN 6 // LED are connected to D6
#define N_PIXELS 16 // Number of LED 
#define N 100 //样本数 
#define fadeDelay 10 // 淡出量
#define noiseLevel 40 // 降噪下限

Adafruit_NeoPixel strip = Adafruit_NeoPixel(N_PIXELS, LED_PIN, NEO_GRB + NEO_KHZ800);

int samples[N]; // 存储样本
int periodFactor = 0; // 用于周期计算
int t1 = -1;
int T;
int slope;
byte periodChanged = 0;

void setup() {
  // Serial.begin(9600);
  strip.begin();
  ledsOff();
  delay(500);
  displayColor(Wheel(100));
  strip.show();
  delay(500);
}

void loop() {
  Samples();
}

void Samples() {
  for (int i = 0; i < N; i++) {
    samples[i] = analogRead(0);
    if (i > 0) {
      slope = samples[i] - samples[i - 1];
    }
    else {
      slope = samples[i] - samples[N - 1];
    }

    if (abs(slope) > noiseLevel) {
      if (slope < 0) {
        calculatePeriod(i);
        if (periodChanged == 1) {
          displayColor(getColor(T));
        }
      }
    }
    else {
      ledsOff();
    }
    periodFactor += 1;
    delay(1);
  }
}

void calculatePeriod(int i) {
  if (t1 == -1) {

    t1 = i;
  }
  else {

    int period = periodFactor * (i - t1);
    periodChanged = T == period ? 0 : 1;
    T = period;
    // Serial.println(T);

    t1 = i;
    periodFactor = 0;
  }
}

uint32_t getColor(int period) {
  if (period == -1)
    return Wheel(0);
  else if (period > 400)
    return Wheel(5);
  else
    return Wheel(map(-1 * period, -400, -1, 50, 255));
}

void fadeOut()
{
  for (int i = 0; i < 5; i++) {
    strip.setBrightness(110 - i * 20);
    strip.show(); // Update strip
    delay(fadeDelay);
    periodFactor += fadeDelay;
  }
}

void fadeIn() {
  strip.setBrightness(100);
  strip.show();

  for (int i = 0; i < 5; i++) {
    //strip.setBrightness(20*i + 30);
    //strip.show();
    delay(fadeDelay);
    periodFactor += fadeDelay;
  }
}

void ledsOff() {
  fadeOut();
  for (int i = 0; i < N_PIXELS; i++) {
    strip.setPixelColor(i, 0, 0, 0);
  }
}

void displayColor(uint32_t color) {
  for (int i = 0; i < N_PIXELS; i++) {
    strip.setPixelColor(i, color);
  }
  fadeIn();
}

uint32_t Wheel(byte WheelPos) {
  // Serial.println(WheelPos);
  if (WheelPos < 85) {

    return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
  }
  else if (WheelPos < 170) {
    WheelPos -= 85;
    return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
  }
  else {
    WheelPos -= 170;
    return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
  }
}

实验场景图

project-image


【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
项目之一:使用Adafruit_NeoPixel库的多彩节奏灯

实验视频剪辑

https://v.youku.com/v_show/id_XNTgyNzM2MTM2NA==.html?spm=a2hcb.playlsit.page.1

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
项目之二:音乐反应式 LED 灯板(4x4位)

实验开源代码

代码
/*
 【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
  项目之二:音乐反应式 LED 灯板
*/

#include <Adafruit_NeoPixel.h>
#include <math.h>
#define N_PIXELS  16
#define MIC_PIN   A0
#define LED_PIN    6
#define SAMPLE_WINDOW  4
#define PEAK_HANG 24
#define PEAK_FALL 4
#define INPUT_FLOOR 10
#define INPUT_CEILING 50
byte peak = 16;
unsigned int sample;

byte Count = 0;
byte HangCount = 0;

Adafruit_NeoPixel strip = Adafruit_NeoPixel(N_PIXELS, LED_PIN, NEO_GRB + NEO_KHZ800);

void setup() {
  Serial.begin(9600);
  analogReference(EXTERNAL);
  strip.setBrightness(22);
  strip.show();
  strip.begin();
}

float fscale( float originalMin, float originalMax, float newBegin, float newEnd, float inputValue, float curve) {

  float OriginalRange = 0;
  float NewRange = 0;
  float zeroRefCurVal = 0;
  float normalizedCurVal = 0;
  float rangedValue = 0;
  boolean invFlag = 0;

  if (curve > 10) curve = 10;
  if (curve < -10) curve = -10;

  curve = (curve * -.1) ;
  curve = pow(10, curve);

  if (inputValue < originalMin) {
    inputValue = originalMin;
  }
  if (inputValue > originalMax) {
    inputValue = originalMax;
  }

  OriginalRange = originalMax - originalMin;

  if (newEnd > newBegin) {
    NewRange = newEnd - newBegin;
  }
  else
  {
    NewRange = newBegin - newEnd;
    invFlag = 1;
  }

  zeroRefCurVal = inputValue - originalMin;
  normalizedCurVal  =  zeroRefCurVal / OriginalRange;   // normalize to 0 - 1 float

  Serial.print(OriginalRange, DEC);
  Serial.print("   ");
  Serial.print(NewRange, DEC);
  Serial.print("   ");
  Serial.println(zeroRefCurVal, DEC);
  Serial.println();
  delay(10);

  if (originalMin > originalMax ) {
    return 0;
  }

  if (invFlag == 0) {
    rangedValue =  (pow(normalizedCurVal, curve) * NewRange) + newBegin;
  }
  else
  {
    rangedValue =  newBegin - (pow(normalizedCurVal, curve) * NewRange);
  }
  return rangedValue;
}

void loop() {
  unsigned long startMillis = millis();
  float peakToPeak = 0;

  unsigned int signalMax = 0;
  unsigned int signalMin = 1023;
  unsigned int c, y;

  while (millis() - startMillis < SAMPLE_WINDOW)
  {
    sample = analogRead(MIC_PIN);
    if (sample < 1024)
    {
      if (sample > signalMax)
      {
        signalMax = sample;
      }
      else if (sample < signalMin)
      {
        signalMin = sample;
      }
    }
  }
  peakToPeak = signalMax - signalMin;

  for (int i = 0; i <= strip.numPixels() - 1; i++) {
    strip.setPixelColor(i, Wheel(map(i, 0, strip.numPixels() - 1, 30, 150)));
  }

  c = fscale(INPUT_FLOOR, INPUT_CEILING, strip.numPixels(), 0, peakToPeak, 2);

  if (c < peak) {
    peak = c;
    HangCount = 0;
  }
  if (c <= strip.numPixels()) {
    drawLine(strip.numPixels(), strip.numPixels() - c, strip.Color(0, 0, 0));
  }

  y = strip.numPixels() - peak;
  strip.setPixelColor(y - 1, Wheel(map(y, 0, strip.numPixels() - 1, 30, 150)));
  strip.show();

  if (HangCount > PEAK_HANG) {
    if (++Count >= PEAK_FALL) {
      peak++;
      Count = 0;
    }
  }
  else {
    HangCount++;
  }
}

void drawLine(uint8_t from, uint8_t to, uint32_t c) {
  uint8_t fromTemp;
  if (from > to) {
    fromTemp = from;
    from = to;
    to = fromTemp;
  }
  for (int i = from; i <= to; i++) {
    strip.setPixelColor(i, c);
  }
}

uint32_t Wheel(byte WheelPos) {
  if (WheelPos < 85) {
    return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
  }
  else if (WheelPos < 170) {
    WheelPos -= 85;
    return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
  }
  else {
    WheelPos -= 170;
    return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
  }
}

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏

项目之二:音乐反应式 LED 灯板(4x4位)

实验视频剪辑

https://v.youku.com/v_show/id_XNTgyNzQwNjIyOA==.html?spm=a2hcb.playlsit.page.1

实验场动态图

project-image

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏

项目之三:六十四位闪动音乐频谱灯(8x8WS2812硬屏)

实验开源代码

代码
/*
  【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
  项目之三:六十四位闪动音乐频谱灯(8x8WS2812硬屏)
*/

#include "FastLED.h"
#define OCTAVE 1 //   // Group buckets into octaves  (use the log output function LOG_OUT 1)
#define OCT_NORM 0 // Don't normalise octave intensities by number of bins
#define FHT_N 256 // set to 256 point fht
#include <FHT.h> // include the library
//int noise[] = {204,188,68,73,150,98,88,68}; // noise level determined by playing pink noise and seeing levels [trial and error]{204,188,68,73,150,98,88,68}


// int noise[] = {204,190,108,85,65,65,55,60}; // noise for mega adk
int noise[] = {204, 195, 100, 90, 85, 80, 75, 75}; // noise for NANO
//int noise[] = {204,198,100,85,85,80,80,80};
float noise_fact[] = {15, 7, 1.5, 1, 1.2, 1.4, 1.7, 3}; // noise level determined by playing pink noise and seeing levels [trial and error]{204,188,68,73,150,98,88,68}
float noise_fact_adj[] = {15, 7, 1.5, 1, 1.2, 1.4, 1.7, 3}; // noise level determined by playing pink noise and seeing levels [trial and error]{204,188,68,73,150,98,88,68}

#define LED_PIN     6
#define LED_TYPE    WS2812
#define COLOR_ORDER GRB

// Params for width and height
const uint8_t kMatrixWidth = 8;
const uint8_t kMatrixHeight = 8;//----------was 27
//#define NUM_LEDS (kMatrixWidth * kMatrixHeight)
#define NUM_LEDS    64

CRGB leds[NUM_LEDS];

int counter2 = 0;



void setup() {
  Serial.begin(9600);
  delay(1000);
  FastLED.addLeds<LED_TYPE, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip );

  FastLED.setBrightness (22);
  fill_solid(leds, NUM_LEDS, CRGB::Black);
  FastLED.show();
  // TIMSK0 = 0; // turn off timer0 for lower jitter
  ADCSRA = 0xe5; // set the adc to free running mode
  ADMUX = 0x40; // use adc0
  DIDR0 = 0x01; // turn off the digital input for adc0
}

void loop() {
  int prev_j[8];
  int beat = 0;
  int prev_oct_j;
  int counter = 0;
  int prev_beat = 0;
  int led_index = 0;
  int saturation = 0;
  int saturation_prev = 0;
  int brightness = 0;
  int brightness_prev = 0;

  while (1) { // reduces jitter
    cli();  // UDRE interrupt slows this way down on arduino1.0
    for (int i = 0 ; i < FHT_N ; i++) { // save 256 samples
      while (!(ADCSRA & 0x10)); // wait for adc to be ready
      ADCSRA = 0xf5; // restart adc
      byte m = ADCL; // fetch adc data
      byte j = ADCH;
      int k = (j << 8) | m; // form into an int
      k -= 0x0200; // form into a signed int
      k <<= 6; // form into a 16b signed int
      fht_input[i] = k; // put real data into bins
    }
    fht_window(); // window the data for better frequency response
    fht_reorder(); // reorder the data before doing the fht
    fht_run(); // process the data in the fht
    fht_mag_octave(); // take the output of the fht  fht_mag_log()

    // every 50th loop, adjust the volume accourding to the value on A2 (Pot)
    if (counter >= 50) {
      ADMUX = 0x40 | (1 & 0x07); // set admux to look at Analogpin A1 - Master Volume

      while (!(ADCSRA & 0x10)); // wait for adc to be ready
      ADCSRA = 0xf5; // restart adc
      delay(10);
      while (!(ADCSRA & 0x10)); // wait for adc to be ready
      ADCSRA = 0xf5; // restart adc
      byte m = ADCL; // fetch adc data
      byte j = ADCH;
      int k = (j << 8) | m; // form into an int
      float master_volume = (k + 0.1) / 1000 + .75; // so the valu will be between ~0.5 and 1.---------------------+.75 was .5
      Serial.println (master_volume);

      for (int i = 1; i < 8; i++) {
        noise_fact_adj[i] = noise_fact[i] * master_volume;
      }

      ADMUX = 0x40 | (0 & 0x07); // set admux back to look at A0 analog pin (to read the microphone input
      counter = 0;
    }

    sei();
    counter++;
    // End of Fourier Transform code - output is stored in fht_oct_out[i].
    // i=0-7 frequency (octave) bins (don't use 0 or 1), fht_oct_out[1]= amplitude of frequency for bin 1
    // for loop a) removes background noise average and takes absolute value b) low / high pass filter as still very noisy
    // c) maps amplitude of octave to a colour between blue and red d) sets pixel colour to amplitude of each frequency (octave)

    for (int i = 1; i < 8; i++) {  // goes through each octave. skip the first 1, which is not useful

      int j;
      j = (fht_oct_out[i] - noise[i]); // take the pink noise average level out, take the asbolute value to avoid negative numbers
      if (j < 10) {
        j = 0;
      }
      j = j * noise_fact_adj[i];

      if (j < 10) {
        j = 0;
      }
      else {
        j = j * noise_fact_adj[i];
        if (j > 180) {
          if (i >= 7) {
            beat += 2;
          }
          else {
            beat += 1;
          }
        }
        j = j / 30;
        j = j * 30; // (force it to more discrete values)
      }

      prev_j[i] = j;

      //     Serial.print(j);
      //     Serial.print(" ");


      // this fills in 11 LED's with interpolated values between each of the 8 OCT values
      if (i >= 2) {
        led_index = 2 * i - 3;
        prev_oct_j = (j + prev_j[i - 1]) / 2;

        saturation = constrain(j + 50, 0, 255); //-----------50 was 30
        saturation_prev = constrain(prev_oct_j + 50, 0, 255);
        brightness = constrain(j, 0, 255);
        brightness_prev = constrain(prev_oct_j, 0, 255);
        if (brightness == 255) {
          saturation = 50;
          brightness = 200;
        }
        if (brightness_prev == 255) {
          saturation_prev = 50;
          brightness_prev = 200;
        }


        for (uint8_t y = 0; y < kMatrixHeight; y++) {
          leds[XY(led_index - 1, y)] = CHSV(j + y * 30, saturation, brightness);
          if (i > 2) {
            prev_oct_j = (j + prev_j[i - 1]) / 2;
            leds[ XY(led_index - 2, y)] = CHSV(prev_oct_j + y * 30, saturation_prev, brightness_prev);
          }
        }
      }
    }

    if (beat >= 7) {
      fill_solid(leds, NUM_LEDS, CRGB::Gray);
      FastLED.setBrightness(200);

    }
    else {
      if (prev_beat != beat) {
        FastLED.setBrightness(40 + beat * beat * 5);
        prev_beat = beat;
      }
    }

    FastLED.show();
    if (beat) {
      counter2 += ((beat + 4) / 2 - 2);
      if (counter2 < 0) {
        counter2 = 1000;
      }
      if (beat > 3 && beat < 7) {
        FastLED.delay (20);
      }
      beat = 0;
    }
    // Serial.println();
  }
}

// Param for different pixel layouts
const bool    kMatrixSerpentineLayout = false;
// Set 'kMatrixSerpentineLayout' to false if your pixels are
// laid out all running the same way, like this:
// Set 'kMatrixSerpentineLayout' to true if your pixels are
// laid out back-and-forth, like this:

uint16_t XY( uint8_t x, uint8_t y)
{
  uint16_t i;

  if ( kMatrixSerpentineLayout == false) {
    i = (y * kMatrixWidth) + x;
  }

  if ( kMatrixSerpentineLayout == true) {
    if ( y & 0x01) {
      // Odd rows run backwards
      uint8_t reverseX = (kMatrixWidth - 1) - x;
      i = (y * kMatrixWidth) + reverseX;
    } else {
      // Even rows run forwards
      i = (y * kMatrixWidth) + x;
    }
  }

  i = (i + counter2) % NUM_LEDS;
  return i;
}

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏

项目之三:六十四位闪动音乐频谱灯(8x8位WS2812硬屏)

实验视频剪辑

https://v.youku.com/v_show/id_XNTgyNzExNzAyOA==.html?spm=a2hcb.playlsit.page.1

实验场景动态图

project-image

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏

项目之四:256位全彩闪动音乐频谱灯(8x32位WS2812硬屏)

实验开源代码

代码
/*
  【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
  项目之三:六十四位闪动音乐频谱灯(8x8WS2812硬屏)
*/

#include "FastLED.h"
#define OCTAVE 1 //   // Group buckets into octaves  (use the log output function LOG_OUT 1)
#define OCT_NORM 0 // Don't normalise octave intensities by number of bins
#define FHT_N 256 // set to 256 point fht
#include <FHT.h> // include the library
//int noise[] = {204,188,68,73,150,98,88,68}; // noise level determined by playing pink noise and seeing levels [trial and error]{204,188,68,73,150,98,88,68}

// int noise[] = {204,190,108,85,65,65,55,60}; // noise for mega adk
int noise[] = {204, 195, 100, 90, 85, 80, 75, 75}; // noise for NANO
//int noise[] = {204,198,100,85,85,80,80,80};
float noise_fact[] = {15, 7, 1.5, 1, 1.2, 1.4, 1.7, 3}; // noise level determined by playing pink noise and seeing levels [trial and error]{204,188,68,73,150,98,88,68}
float noise_fact_adj[] = {15, 7, 1.5, 1, 1.2, 1.4, 1.7, 3}; // noise level determined by playing pink noise and seeing levels [trial and error]{204,188,68,73,150,98,88,68}

#define LED_PIN     6
#define LED_TYPE    WS2812
#define COLOR_ORDER GRB

// Params for width and height
const uint8_t kMatrixWidth = 8;
const uint8_t kMatrixHeight = 32;//----------was 27
//#define NUM_LEDS (kMatrixWidth * kMatrixHeight)
#define NUM_LEDS    256

CRGB leds[NUM_LEDS];

int counter2 = 0;

void setup() {
  Serial.begin(9600);
  delay(1000);
  FastLED.addLeds<LED_TYPE, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip );

  FastLED.setBrightness (6);
  fill_solid(leds, NUM_LEDS, CRGB::Black);
  FastLED.show();
  // TIMSK0 = 0; // turn off timer0 for lower jitter
  ADCSRA = 0xe5; // set the adc to free running mode
  ADMUX = 0x40; // use adc0
  DIDR0 = 0x01; // turn off the digital input for adc0
}

void loop() {
  int prev_j[8];
  int beat = 0;
  int prev_oct_j;
  int counter = 0;
  int prev_beat = 0;
  int led_index = 0;
  int saturation = 0;
  int saturation_prev = 0;
  int brightness = 0;
  int brightness_prev = 0;

  while (1) { // reduces jitter
    cli();  // UDRE interrupt slows this way down on arduino1.0
    for (int i = 0 ; i < FHT_N ; i++) { // save 256 samples
      while (!(ADCSRA & 0x10)); // wait for adc to be ready
      ADCSRA = 0xf5; // restart adc
      byte m = ADCL; // fetch adc data
      byte j = ADCH;
      int k = (j << 8) | m; // form into an int
      k -= 0x0200; // form into a signed int
      k <<= 6; // form into a 16b signed int
      fht_input[i] = k; // put real data into bins
    }
    fht_window(); // window the data for better frequency response
    fht_reorder(); // reorder the data before doing the fht
    fht_run(); // process the data in the fht
    fht_mag_octave(); // take the output of the fht  fht_mag_log()

    // every 50th loop, adjust the volume accourding to the value on A2 (Pot)
    if (counter >= 50) {
      ADMUX = 0x40 | (1 & 0x07); // set admux to look at Analogpin A1 - Master Volume

      while (!(ADCSRA & 0x10)); // wait for adc to be ready
      ADCSRA = 0xf5; // restart adc
      delay(10);
      while (!(ADCSRA & 0x10)); // wait for adc to be ready
      ADCSRA = 0xf5; // restart adc
      byte m = ADCL; // fetch adc data
      byte j = ADCH;
      int k = (j << 8) | m; // form into an int
      float master_volume = (k + 0.1) / 1000 + .75; // so the valu will be between ~0.5 and 1.---------------------+.75 was .5
      Serial.println (master_volume);

      for (int i = 1; i < 8; i++) {
        noise_fact_adj[i] = noise_fact[i] * master_volume;
      }

      ADMUX = 0x40 | (0 & 0x07); // set admux back to look at A0 analog pin (to read the microphone input
      counter = 0;
    }

    sei();
    counter++;
    // End of Fourier Transform code - output is stored in fht_oct_out[i].
    // i=0-7 frequency (octave) bins (don't use 0 or 1), fht_oct_out[1]= amplitude of frequency for bin 1
    // for loop a) removes background noise average and takes absolute value b) low / high pass filter as still very noisy
    // c) maps amplitude of octave to a colour between blue and red d) sets pixel colour to amplitude of each frequency (octave)

    for (int i = 1; i < 8; i++) {  // goes through each octave. skip the first 1, which is not useful

      int j;
      j = (fht_oct_out[i] - noise[i]); // take the pink noise average level out, take the asbolute value to avoid negative numbers
      if (j < 10) {
        j = 0;
      }
      j = j * noise_fact_adj[i];

      if (j < 10) {
        j = 0;
      }
      else {
        j = j * noise_fact_adj[i];
        if (j > 180) {
          if (i >= 7) {
            beat += 2;
          }
          else {
            beat += 1;
          }
        }
        j = j / 30;
        j = j * 30; // (force it to more discrete values)
      }

      prev_j[i] = j;

      //     Serial.print(j);
      //     Serial.print(" ");


      // this fills in 11 LED's with interpolated values between each of the 8 OCT values
      if (i >= 2) {
        led_index = 2 * i - 3;
        prev_oct_j = (j + prev_j[i - 1]) / 2;

        saturation = constrain(j + 50, 0, 255); //-----------50 was 30
        saturation_prev = constrain(prev_oct_j + 50, 0, 255);
        brightness = constrain(j, 0, 255);
        brightness_prev = constrain(prev_oct_j, 0, 255);
        if (brightness == 255) {
          saturation = 50;
          brightness = 200;
        }
        if (brightness_prev == 255) {
          saturation_prev = 50;
          brightness_prev = 200;
        }


        for (uint8_t y = 0; y < kMatrixHeight; y++) {
          leds[XY(led_index - 1, y)] = CHSV(j + y * 30, saturation, brightness);
          if (i > 2) {
            prev_oct_j = (j + prev_j[i - 1]) / 2;
            leds[ XY(led_index - 2, y)] = CHSV(prev_oct_j + y * 30, saturation_prev, brightness_prev);
          }
        }
      }
    }

    if (beat >= 7) {
      fill_solid(leds, NUM_LEDS, CRGB::Gray);
      FastLED.setBrightness(200);

    }
    else {
      if (prev_beat != beat) {
        FastLED.setBrightness(40 + beat * beat * 5);
        prev_beat = beat;
      }
    }

    FastLED.show();
    if (beat) {
      counter2 += ((beat + 4) / 2 - 2);
      if (counter2 < 0) {
        counter2 = 1000;
      }
      if (beat > 3 && beat < 7) {
        FastLED.delay (20);
      }
      beat = 0;
    }
    // Serial.println();
  }
}

// Param for different pixel layouts
const bool    kMatrixSerpentineLayout = false;
// Set 'kMatrixSerpentineLayout' to false if your pixels are
// laid out all running the same way, like this:
// Set 'kMatrixSerpentineLayout' to true if your pixels are
// laid out back-and-forth, like this:

uint16_t XY( uint8_t x, uint8_t y)
{
  uint16_t i;

  if ( kMatrixSerpentineLayout == false) {
    i = (y * kMatrixWidth) + x;
  }

  if ( kMatrixSerpentineLayout == true) {
    if ( y & 0x01) {
      // Odd rows run backwards
      uint8_t reverseX = (kMatrixWidth - 1) - x;
      i = (y * kMatrixWidth) + reverseX;
    } else {
      // Even rows run forwards
      i = (y * kMatrixWidth) + x;
    }
  }

  i = (i + counter2) % NUM_LEDS;
  return i;
}

实验场景图

project-image

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏

项目之四:256位全彩闪动音乐频谱灯(8x32位WS2812硬屏)

实验视频剪辑

https://v.youku.com/v_show/id_XNTgyNzE0MTM3Mg==.html?spm=a2hcb.playlsit.page.1

实验场景动态图

project-image

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏

项目之五:快速哈特利变换FHT音乐反应灯板(8X8位WS2812硬屏)

实验开源代码

代码
/*
 【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
  项目之五:快速哈特利变换FHT音乐反应灯板(8X8位WS2812硬屏)
*/

#define qsubd(x, b) ((x>b)?wavebright:0)                     // A digital unsigned subtraction macro. if result <0, then => 0. Otherwise, take on fixed value.
#define qsuba(x, b) ((x>b)?x-b:0)                            // Unsigned subtraction macro. if result <0, then => 0.

#define wavebright 128                                        // qsubd result will be this value if subtraction is >0.

#include "FastLED.h"                                          // FastLED library. Preferably the latest copy of FastLED 2.1.

#if FASTLED_VERSION < 3001000
#error "Requires FastLED 3.1 or later; check github for latest code."
#endif

// Fixed definitions cannot change on the fly.
#define LED_DT 6                                             // Data pin to connect to the strip.
//#define LED_CK 11                                             // Clock pin for APA102 or WS2801
#define COLOR_ORDER GRB                                       // It's GRB for WS2812
#define LED_TYPE WS2812B                                       // What kind of strip are you using (APA102, WS2801 or WS2812B)
#define NUM_LEDS 64                                       // Number of LED's.

// Initialize changeable global variables.
uint8_t max_bright = 255;                                     // Overall brightness definition. It can be changed on the fly.

struct CRGB leds[NUM_LEDS];                                   // Initialize our LED array.


#define LOG_OUT 1

#define FHT_N 256                                             // Set to 256 point fht.
#define inputPin A0
//#define potPin A4

#include <FHT.h>                                              // FHT library


uint8_t hueinc = 0;                                               // A hue increment value to make it rotate a bit.
uint8_t micmult = 25;
uint8_t fadetime = 900;
uint8_t noiseval = 25;                                        // Increase this to reduce sensitivity. 30 seems best for quiet

void setup() {
  analogReference(EXTERNAL);                                  // Connect 3.3V to AREF pin for any microphones using 3.3V
  Serial.begin(9600);                                        // use the serial port

  LEDS.addLeds<LED_TYPE, LED_DT, COLOR_ORDER>(leds, NUM_LEDS);
  //  LEDS.addLeds<LED_TYPE, LED_DT, LED_CK, COLOR_ORDER>(leds, NUM_LEDS);

  FastLED.setBrightness(max_bright);
  set_max_power_in_volts_and_milliamps(5, 300);               // FastLED Power management set at 5V, 500mA.
}


void loop() {
  //    noiseval = map(analogRead(potPin), 0, 1023, 16, 48);          // Adjust sensitivity of cutoff.
  EVERY_N_MILLISECONDS(13) {
    fhtsound();
  }
  show_at_max_brightness_for_power();

  Serial.println(LEDS.getFPS(), DEC);         // Display frames per second on the serial monitor.
  Serial.println(" ");          // Display frames per second on the serial monitor.
  Serial.println(analogRead(inputPin));       // print as an ASCII-encoded decimal         */

}


void fhtsound() {
  // hueinc++;                                                   // A cute little hue incrementer.
  GetFHT();                                                   // Let's take FHT_N samples and crunch 'em.

  for (int i = 0; i < NUM_LEDS; i++) {                        // Run through the LED array.

    int tmp = qsuba(fht_log_out[2 * i + 2], noiseval);       // Get the sample and subtract the 'quiet' normalized values, but don't go < 0.
    if (tmp > (leds[i].r + leds[i].g + leds[i].b) / 2)          // Refresh an LED only when the intensity is low
      leds[i] = CHSV((i * 4) + tmp * micmult, 255, tmp * micmult); // Note how we really cranked up the tmp value to get BRIGHT LED's. Also increment the hue for fun.
    leds[i].nscale8(fadetime);                                     // Let's fade the whole thing over time as well.
  }
} // fhtsound()


void GetFHT() {
  cli();
  for (int i = 0 ; i < FHT_N ; i++) fht_input[i] = analogRead(inputPin);
  sei();

  fht_window();                                               // Window the data for better frequency response.
  fht_reorder();                                              // Reorder the data before doing the fht.
  fht_run();                                                  // Process the data in the fht.
  fht_mag_log();
} // GetFHT()

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏

项目之五:快速哈特利变换FHT音乐反应灯板(8X8位WS2812硬屏)

实验视频剪辑

https://v.youku.com/v_show/id_XNTgwODY2NzkzMg==.html?spm=a2hcb.playlsit.page.1

实验场景动态图

project-image

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏

项目之六:快速哈特利变换FHT音乐反应灯板(8X32位WS2812硬屏)

实验开源代码

代码
/*
  【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
  项目之六:快速哈特利变换FHT音乐反应灯板(8X32位 WS2812硬屏)
*/

#define qsubd(x, b) ((x>b)?wavebright:0)                     // A digital unsigned subtraction macro. if result <0, then => 0. Otherwise, take on fixed value.
#define qsuba(x, b) ((x>b)?x-b:0)                            // Unsigned subtraction macro. if result <0, then => 0.
#define wavebright 128    // qsubd result will be this value if subtraction is >0.

#include "FastLED.h"                                          // FastLED library. Preferably the latest copy of FastLED 2.1.
#if FASTLED_VERSION < 3001000
#error "Requires FastLED 3.1 or later; check github for latest code."
#endif

// Fixed definitions cannot change on the fly.
#define LED_DT 6                                             // Data pin to connect to the strip.
//#define LED_CK 11                                             // Clock pin for APA102 or WS2801
#define COLOR_ORDER GRB                                       // It's GRB for WS2812
#define LED_TYPE WS2812B                                       // What kind of strip are you using (APA102, WS2801 or WS2812B)
#define NUM_LEDS 256                                       // Number of LED's.

// Initialize changeable global variables.
uint8_t max_bright = 255;                                     // Overall brightness definition. It can be changed on the fly.

struct CRGB leds[NUM_LEDS];                                   // Initialize our LED array.


#define LOG_OUT 1

#define FHT_N 256                                             // Set to 256 point fht.
#define inputPin A0
//#define potPin A4

#include <FHT.h>                                              // FHT library


uint8_t hueinc = 0;                                               // A hue increment value to make it rotate a bit.
uint8_t micmult = 25;
uint8_t fadetime = 900;
uint8_t noiseval = 25;                                        // Increase this to reduce sensitivity. 30 seems best for quiet

void setup() {
  analogReference(EXTERNAL);                                  // Connect 3.3V to AREF pin for any microphones using 3.3V
  Serial.begin(9600);                                        // use the serial port
  FastLED.setBrightness (22);
  LEDS.addLeds<LED_TYPE, LED_DT, COLOR_ORDER>(leds, NUM_LEDS);
  //  LEDS.addLeds<LED_TYPE, LED_DT, LED_CK, COLOR_ORDER>(leds, NUM_LEDS);

  FastLED.setBrightness(max_bright);
  set_max_power_in_volts_and_milliamps(5, 300);               // FastLED Power management set at 5V, 500mA.
}


void loop() {
  //    noiseval = map(analogRead(potPin), 0, 1023, 16, 48);          // Adjust sensitivity of cutoff.
  EVERY_N_MILLISECONDS(13) {
    fhtsound();
  }
  show_at_max_brightness_for_power();

  Serial.println(LEDS.getFPS(), DEC);         // Display frames per second on the serial monitor.
  Serial.println(" ");          // Display frames per second on the serial monitor.
  Serial.println(analogRead(inputPin));       // print as an ASCII-encoded decimal         */

}


void fhtsound() {
  // hueinc++;                                                   // A cute little hue incrementer.
  GetFHT();                                                   // Let's take FHT_N samples and crunch 'em.

  for (int i = 0; i < NUM_LEDS; i++) {                        // Run through the LED array.

    int tmp = qsuba(fht_log_out[2 * i + 2], noiseval);       // Get the sample and subtract the 'quiet' normalized values, but don't go < 0.
    if (tmp > (leds[i].r + leds[i].g + leds[i].b) / 2)          // Refresh an LED only when the intensity is low
      leds[i] = CHSV((i * 4) + tmp * micmult, 255, tmp * micmult); // Note how we really cranked up the tmp value to get BRIGHT LED's. Also increment the hue for fun.
    leds[i].nscale8(fadetime);                                     // Let's fade the whole thing over time as well.
  }
} // fhtsound()


void GetFHT() {
  cli();
  for (int i = 0 ; i < FHT_N ; i++) fht_input[i] = analogRead(inputPin);
  sei();

  fht_window();                                               // Window the data for better frequency response.
  fht_reorder();                                              // Reorder the data before doing the fht.
  fht_run();                                                  // Process the data in the fht.
  fht_mag_log();
} // GetFHT()

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏

项目之六:快速哈特利变换FHT音乐反应灯板(8X32位WS2812硬屏)

实验视频剪辑

https://v.youku.com/v_show/id_XNTgyNzY0NTc5Mg==.html?spm=a2hcb.playlsit.page.1

实验场景动态图

project-image

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
项目之七:基于虚拟轮生成颜色的音乐可视化(8X32位 WS2812硬屏)

代码
/*
  【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
  项目之七:基于虚拟轮生成颜色的音乐可视化(8X32位 WS2812硬屏)
*/

#include <FastLED.h>

// LED LIGHTING SETUP
#define LED_PIN     6
#define NUM_LEDS    480
#define BRIGHTNESS  30
#define LED_TYPE    WS2811
#define COLOR_ORDER GRB
CRGB leds[NUM_LEDS];

#define UPDATES_PER_SECOND 100

// AUDIO INPUT SETUP
int audio = A0;

// STANDARD VISUALIZER VARIABLES
int loop_max = 0;
int k = 255; // COLOR WHEEL POSITION
int decay = 0; // HOW MANY MS BEFORE ONE LIGHT DECAY
int decay_check = 0;
long pre_react = 0; // NEW SPIKE CONVERSION
long react = 0; // NUMBER OF LEDs BEING LIT
long post_react = 0; // OLD SPIKE CONVERSION

// RAINBOW WAVE SETTINGS
int wheel_speed = 4;

void setup()
{
  // LED LIGHTING SETUP
  delay( 3000 ); // power-up safety delay
  FastLED.addLeds<LED_TYPE, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip );
  FastLED.setBrightness(  BRIGHTNESS );

  // CLEAR LEDS
  for (int i = 0; i < NUM_LEDS; i++)
    leds[i] = CRGB(0, 0, 0);
  FastLED.show();

  // SERIAL AND INPUT SETUP
  Serial.begin(115200);
  pinMode(audio, INPUT);
  Serial.println("\nListening...");
}

CRGB Scroll(int pos) {
  CRGB color (0,0,0);
  if(pos < 85) {
    color.g = 0;
    color.r = ((float)pos / 85.0f) * 255.0f;
    color.b = 255 - color.r;
  } else if(pos < 170) {
    color.g = ((float)(pos - 85) / 85.0f) * 255.0f;
    color.r = 255 - color.g;
    color.b = 0;
  } else if(pos < 256) {
    color.b = ((float)(pos - 170) / 85.0f) * 255.0f;
    color.g = 255 - color.b;
    color.r = 1;
  }
  return color;
}

void rainbow(){
  for(int i = NUM_LEDS - 1; i >= 0; i--) {
    if (i < react)
      leds[i] = Scroll((i * 256 / 50 + k) % 256);
    else
      leds[i] = CRGB(0, 0, 0);      
  }
  FastLED.show();
}

void loop()
{
  int audio_input = analogRead(audio); // ADD x2 HERE FOR MORE SENSITIVITY  

  if (audio_input > 0)
  {
    pre_react = ((long)NUM_LEDS * (long)audio_input) / 1023L; // TRANSLATE AUDIO LEVEL TO NUMBER OF LEDs

    if (pre_react > react) // ONLY ADJUST LEVEL OF LED IF LEVEL HIGHER THAN CURRENT LEVEL
      react = pre_react;

    Serial.print(audio_input);
    Serial.print(" -> ");
    Serial.println(pre_react);
  }

  rainbow(); // APPLY COLOR

  k = k - wheel_speed; // SPEED OF COLOR WHEEL
  if (k < 0) // RESET COLOR WHEEL
    k = 255;

  // REMOVE LEDs
  decay_check++;
  if (decay_check > decay)
  {
    decay_check = 0;
    if (react > 0)
      react--;
  }
  //delay(1);
}

实验场景图 动态图

project-image

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
项目之八:通过快速傅里叶变换在ws2812b8*8灯板上显示频谱

代码
/*
  【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
  项目之八:通过快速傅里叶变换在ws2812b8*8灯板上显示频谱
*/

#include  "arduinoFFT.h"
#include <FastLED.h>   

#define NUM_LEDS 64   
#define LED_TYPE WS2812
#define COLOR_ORDER GRB

arduinoFFT FFT = arduinoFFT();
CRGB leds[NUM_LEDS];           

#define CHANNEL A0
#define DATA_PIN 6

const uint8_t max_bright = 2;         
const uint16_t samples = NUM_LEDS / 4;
const byte halfsamples = samples / 2;  
uint8_t gHue;                          
int value;                             
double vReal[samples];                 
double vImag[samples];                 
char toData[halfsamples];              

int pointJump[halfsamples];
int uJump[halfsamples];     
int dJump[halfsamples];   

int uValue;                 
int dValue;                 
int tValue;                 
int toDown = 0;            
uint8_t toDownSpeed = 3;   
int pointDown = 0;         
uint8_t pointDownSpeed = 9;

void setup(){
  delay(100);              
  Serial.println("Ready");
  FastLED.addLeds<LED_TYPE, DATA_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection(TypicalLEDStrip);
  FastLED.setBrightness(max_bright);
}

void loop(){
  FastLED.clear();                        
  EVERY_N_MILLISECONDS(10) {
    gHue += 10;  
  }
  for (int i = 0; i < samples; i++)        
  {
    value = analogRead(CHANNEL);
    vReal[i] = value;      
    vImag[i] = 0.0;         
  }
  
  FFT.Windowing(vReal, samples, FFT_WIN_TYP_HAMMING, FFT_FORWARD);
  FFT.Compute(vReal, vImag, samples, FFT_FORWARD);
  FFT.ComplexToMagnitude(vReal, vImag, samples);
  
  for (int i = 0; i < halfsamples; i++)
  {
    toData[i] = vReal[i + halfsamples / 2];   
    toData[i] = constrain(toData[i], 0, 100);
    toData[i] = map(toData[i], 0, 100, 1, 7);
  }
  for (int i = 0; i < halfsamples; i++)
  {
    uValue = toData[i];   
    uJump[i]++;            
    if (uValue > uJump[i])
    {
      uValue = uJump[i];
    }
    else
    {
      uJump[i] = uValue;
    }
    dValue = uValue;
    toDown++;                     
    if (toDown % toDownSpeed == 0)
    {
      dJump[i]--;
      toDown = 0;
    }
    if (dValue > pointJump[i])
    {
      dJump[i] = dValue;
    }
    else
    {
      dValue = dJump[i];
    }
    tValue = uValue;                     
    pointDown++;                        
    if (pointDown % pointDownSpeed == 0)
    {
      pointJump[i]--;
      pointDown = 0;  
    }
    if (tValue > pointJump[i])
    {
      pointJump[i] = tValue;
    }
    else
    {
      tValue = pointJump[i];
    }
    fill_rainbow(leds + 8 * i, uValue, gHue, 30);
    fill_rainbow(leds + 8 * i, dValue, gHue, 30);
    fill_solid(leds + 8 * i + tValue, 1, CRGB::White);
   
  }
  FastLED.show();
  delay(10);      
}

实验场景图 动态图

project-image

实验的视频记录


https://v.youku.com/v_show/id_XN ... hcb.playlsit.page.1

【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
项目之九:FastLED多彩音乐节奏屏灯

代码
/*
  【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
  项目之九:FastLED多彩音乐节奏屏灯
*/

#include<FastLED.h>
#include<MegunoLink.h>
#include<Filter.h>

// define necessary parameters
#define N_PIXELS  64
#define MIC_PIN   A0
#define LED_PIN   6
// the following parameters can be tweaked according to your audio levels
#define NOISE 240
#define TOP   (N_PIXELS+2) // allow the max level to be slightly off scale
#define LED_TYPE  WS2811
#define BRIGHTNESS  34     // a little dim for recording purposes
#define COLOR_ORDER GRB

// declare the LED array
CRGB leds[N_PIXELS];

// define the variables needed for the audio levels
int lvl = 0, minLvl = 0, maxLvl = 300; // tweak the min and max as needed

// instantiate the filter class for smoothing the raw audio signal
ExponentialFilter<long> ADCFilter(5, 0);

void setup() {
  // put your setup code here, to run once:
  // Serial.begin(115200);
  // initialize the LED object
  FastLED.addLeds<LED_TYPE, LED_PIN, COLOR_ORDER>(leds, N_PIXELS).setCorrection(TypicalLEDStrip);
  FastLED.setBrightness(BRIGHTNESS);
}

void loop() {
  // put your main code here, to run repeatedly:
  // read the audio signal and filter it
  int n, height;
  n = analogRead(MIC_PIN);
  // remove the MX9614 bias of 1.25VDC
  n = abs(1023 - n);
  // hard limit noise/hum
  n = (n <= NOISE) ? 0 : abs(n - NOISE);
  // apply the exponential filter to smooth the raw signal
  ADCFilter.Filter(n);
  lvl = ADCFilter.Current();
  //  // plot the raw versus filtered signals
  //Serial.print(n);
  //Serial.print(" ");
  //Serial.println(lvl);
  // calculate the number of pixels as a percentage of the range
  // TO-DO: can be done dynamically by using a running average of min/max audio levels
  height = TOP * (lvl - minLvl) / (long)(maxLvl - minLvl);
  if (height < 0L) height = 0;
  else if (height > TOP) height = TOP;
  // turn the LEDs corresponding to the level on/off
  for (uint8_t i = 0; i < N_PIXELS; i++) {
    // turn off LEDs above the current level
    if (i >= height) leds[i] = CRGB(0, 0, 0);
    // otherwise, turn them on!
    else leds[i] = Wheel( map( i, 0, N_PIXELS - 1, 30, 150 ) );
  }
  FastLED.show();
}

CRGB Wheel(byte WheelPos) {
  // return a color value based on an input value between 0 and 255
  if (WheelPos < 85)
    return CRGB(WheelPos * 3, 255 - WheelPos * 3, 0);
  else if (WheelPos < 170) {
    WheelPos -= 85;
    return CRGB(255 - WheelPos * 3, 0, WheelPos * 3);
  } else {
    WheelPos -= 170;
    return CRGB(0, WheelPos * 3, 255 - WheelPos * 3);
  }
}

实验场景图 动态图

project-image

实验的视频记录

https://v.youku.com/v_show/id_XNTg4ODE1MTMyMA==.html?spm=a2hcb.playlsit.page.1

  【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
 项目之十:Arduino 和 FastLED多彩音乐灯

代码
/*
  【花雕动手做】有趣好玩的音乐可视化系列小项目(10)---WS2812硬板屏
  项目之十:Arduino 和 FastLED多彩音乐灯
*/

#include <FastLED.h>
#define SAMPLEPERIODUS 200
#define MIC_PIN A0
#define LED_DT 6
#define COLOR_ORDER GRB
#define LED_TYPE WS2812
#define NUM_LEDS 256
uint8_t max_bright = 33;
struct CRGB leds[NUM_LEDS];
CRGBPalette16 currentPalette = RainbowColors_p;
CRGBPalette16 targetPalette;

void setup() {
  pinMode(LED_BUILTIN, OUTPUT);
  LEDS.addLeds<LED_TYPE, LED_DT, COLOR_ORDER>(leds, NUM_LEDS);
  FastLED.setBrightness(max_bright);
}

float bassFilter(float sample) {
  static float xv[3] = {0, 0, 0}, yv[3] = {0, 0, 0};
  xv[0] = xv[1]; xv[1] = xv[2];
  xv[2] = sample / 9.1f;
  yv[0] = yv[1]; yv[1] = yv[2];
  yv[2] = (xv[2] - xv[0]) + (-0.7960060012f * yv[0]) + (1.7903124146f * yv[1]);
  return yv[2];
}

float envelopeFilter(float sample) {
  static float xv[2] = {0, 0}, yv[2] = {0, 0};
  xv[0] = xv[1];
  xv[1] = sample / 160.f;
  yv[0] = yv[1];
  yv[1] = (xv[0] + xv[1]) + (0.9875119299f * yv[0]);
  return yv[1];
}

float beatFilter(float sample) {
  static float xv[3] = {0, 0, 0}, yv[3] = {0, 0, 0};
  xv[0] = xv[1]; xv[1] = xv[2];
  xv[2] = sample / 7.015f;
  yv[0] = yv[1]; yv[1] = yv[2];
  yv[2] = (xv[2] - xv[0]) + (-0.7169861741f * yv[0]) + (1.4453653501f * yv[1]);
  return yv[2];
}

void loop() {
  unsigned long time = micros();
  float sample, value, envelope, beat, thresh, micLev;
  for (uint8_t i = 0; ; ++i) {
    sample = (float)analogRead(MIC_PIN);
    micLev = ((micLev * 67) + sample) / 68;
    sample -= micLev;
    value = bassFilter(sample);
    value = abs(value);
    envelope = envelopeFilter(value);
    if (i == 200) {
      beat = beatFilter(envelope);
      thresh = 0.02f * 75.;

      if (beat > thresh) {
        digitalWrite(LED_BUILTIN, LOW);

        int strt = random8(NUM_LEDS / 2);
        int ende = strt + random8(NUM_LEDS / 2);
        for (int i = strt; i < ende; i++) {
          uint8_t index = inoise8(i * 30, millis() + i * 30);
          leds[i] = ColorFromPalette(currentPalette, index, 255, LINEARBLEND);
        }
      } else {
        digitalWrite(LED_BUILTIN, HIGH);
      }
      i = 0;
    }

    EVERY_N_SECONDS(5) {
      uint8_t baseC = random8();
      targetPalette = CRGBPalette16(CHSV(baseC + random8(32), 255, random8(128, 255)),
                                    CHSV(baseC + random8(64), 255, random8(128, 255)),
                                    CHSV(baseC + random8(64), 192, random8(128, 255)),
                                    CHSV(baseC + random8(),   255, random8(128, 255)));
    }

    EVERY_N_MILLISECONDS(50) {
      uint8_t maxChanges = 24;
      nblendPaletteTowardPalette(currentPalette, targetPalette, maxChanges);
    }

    EVERY_N_MILLIS(50) {
      fadeToBlackBy(leds, NUM_LEDS, 64);
      FastLED.show();
    }

    for (unsigned long up = time + SAMPLEPERIODUS; time > 20 && time < up; time = micros()) {  }

  } // for i
} // loop()

实验的视频记录

优酷:

B站:https://www.bilibili.com/video/BV1L14y157PU/?vd_source=98c6b1fc23b2787403d97f8d3cc0b7e5

  【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
 实验一百七十七:Wemos D1 R32 ESP32开发板
 项目之四十六:基于虚拟轮生成颜色的256位音乐可视化

代码
/*
  【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
  实验一百七十七:Wemos D1 R32 ESP32开发板
  项目之四十六:基于虚拟轮生成颜色的256位音乐可视化
*/

#include <FastLED.h>

// LED LIGHTING SETUP
#define LED_PIN     23
#define NUM_LEDS    256
#define BRIGHTNESS  30
#define LED_TYPE    WS2811
#define COLOR_ORDER GRB
CRGB leds[NUM_LEDS];

#define UPDATES_PER_SECOND 100

// AUDIO INPUT SETUP
int audio = 38;

// STANDARD VISUALIZER VARIABLES
int loop_max = 0;
int k = 255; // COLOR WHEEL POSITION
int decay = 0; // HOW MANY MS BEFORE ONE LIGHT DECAY
int decay_check = 0;
long pre_react = 0; // NEW SPIKE CONVERSION
long react = 0; // NUMBER OF LEDs BEING LIT
long post_react = 0; // OLD SPIKE CONVERSION

// RAINBOW WAVE SETTINGS
int wheel_speed = 4;

void setup()
{
  // LED LIGHTING SETUP
  delay( 3000 ); // power-up safety delay
  FastLED.addLeds<LED_TYPE, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip );
  FastLED.setBrightness(  BRIGHTNESS );

  // CLEAR LEDS
  for (int i = 0; i < NUM_LEDS; i++)
    leds[i] = CRGB(0, 0, 0);
  FastLED.show();

  // SERIAL AND INPUT SETUP
  Serial.begin(115200);
  pinMode(audio, INPUT);
  Serial.println("\nListening...");
}

CRGB Scroll(int pos) {
  CRGB color (0,0,0);
  if(pos < 85) {
    color.g = 0;
    color.r = ((float)pos / 85.0f) * 255.0f;
    color.b = 255 - color.r;
  } else if(pos < 170) {
    color.g = ((float)(pos - 85) / 85.0f) * 255.0f;
    color.r = 255 - color.g;
    color.b = 0;
  } else if(pos < 256) {
    color.b = ((float)(pos - 170) / 85.0f) * 255.0f;
    color.g = 255 - color.b;
    color.r = 1;
  }
  return color;
}

void rainbow(){
  for(int i = NUM_LEDS - 1; i >= 0; i--) {
    if (i < react)
      leds[i] = Scroll((i * 256 / 50 + k) % 256);
    else
      leds[i] = CRGB(0, 0, 0);      
  }
  FastLED.show(); 
}

void loop(){
  int audio_input = analogRead(audio)*5.5; // 在此处调整,以获得更多敏感性  

  if (audio_input > 0)
  {
    pre_react = ((long)NUM_LEDS * (long)audio_input) / 1023L; // TRANSLATE AUDIO LEVEL TO NUMBER OF LEDs

    if (pre_react > react) // ONLY ADJUST LEVEL OF LED IF LEVEL HIGHER THAN CURRENT LEVEL
      react = pre_react;

    Serial.print(audio_input);
    Serial.print(" -> ");
    Serial.println(pre_react);
  }

  rainbow(); // APPLY COLOR

  k = k - wheel_speed; // SPEED OF COLOR WHEEL
  if (k < 0) // RESET COLOR WHEEL
    k = 255;

  // REMOVE LEDs
  decay_check++;
  if (decay_check > decay)
  {
    decay_check = 0;
    if (react > 0)
      react--;
  }
  delay(1);
}

实验场景图  动态图

 


动画114.gif

实验的视频记录

优酷:https://v.youku.com/v_show/id_XNTkyMTAwNDQwOA==.html?spm=a2hcb.playlsit.page.1

B站:https://www.bilibili.com/video/BV1gP4y117Xx/?vd_source=98c6b1fc23b2787403d97f8d3cc0b7e5

  【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)

  实验一百七十七:Wemos D1 R32 ESP32开发板

  项目之四十七:快速傅里叶变换256位频谱仪

代码
/*
  【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
  实验一百七十七:Wemos D1 R32 ESP32开发板
  项目之四十七:快速傅里叶变换256位频谱仪
*/

#include  "arduinoFFT.h" 
#include <FastLED.h>    

#define NUM_LEDS 256    
#define LED_TYPE WS2812 
#define COLOR_ORDER GRB 

arduinoFFT FFT = arduinoFFT(); 
CRGB leds[NUM_LEDS];           

#define CHANNEL 39 
#define DATA_PIN 23 

const uint8_t max_bright = 2;          
const uint16_t samples = NUM_LEDS / 4;
const byte halfsamples = samples / 2;  
uint8_t gHue;                          
int value;                             
double vReal[samples];                 
double vImag[samples];                 
char toData[halfsamples];              

int pointJump[halfsamples]; 
int uJump[halfsamples];     
int dJump[halfsamples];    

int uValue;                 
int dValue;                 
int tValue;                 
int toDown = 0;             
uint8_t toDownSpeed = 3;    
int pointDown = 0;          
uint8_t pointDownSpeed = 9; 

void setup(){
  delay(100);              
  Serial.println("Ready"); 
  FastLED.addLeds<LED_TYPE, DATA_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection(TypicalLEDStrip);
  FastLED.setBrightness(max_bright); 
}

void loop(){
  FastLED.clear();                         
  EVERY_N_MILLISECONDS(10) {
    gHue += 10;  
  }
  for (int i = 0; i < samples; i++)        
  {
    value = analogRead(CHANNEL); 
    vReal[i] = value;       
    vImag[i] = 0.0;         
  }
  
  FFT.Windowing(vReal, samples, FFT_WIN_TYP_HAMMING, FFT_FORWARD);
  FFT.Compute(vReal, vImag, samples, FFT_FORWARD);
  FFT.ComplexToMagnitude(vReal, vImag, samples);
  
  for (int i = 0; i < halfsamples; i++) 
  {
    toData[i] = vReal[i + halfsamples / 2];   
    toData[i] = constrain(toData[i], 0, 100); 
    toData[i] = map(toData[i], 0, 100, 1, 7); 
  }
  for (int i = 0; i < halfsamples; i++) 
  {
    uValue = toData[i];    
    uJump[i]++;            
    if (uValue > uJump[i]) 
    {
      uValue = uJump[i]; 
    }
    else
    {
      uJump[i] = uValue;
    }
    dValue = uValue; 
    toDown++;                      
    if (toDown % toDownSpeed == 0) 
    {
      dJump[i]--; 
      toDown = 0; 
    }
    if (dValue > pointJump[i]) 
    {
      dJump[i] = dValue; 
    }
    else
    {
      dValue = dJump[i]; 
    }
    tValue = uValue;                     
    pointDown++;                         
    if (pointDown % pointDownSpeed == 0) 
    {
      pointJump[i]--; 
      pointDown = 0;  
    }
    if (tValue > pointJump[i]) 
    {
      pointJump[i] = tValue; 
    }
    else
    {
      tValue = pointJump[i]; 
    }
    fill_rainbow(leds + 8 * i, uValue, gHue, 30);
    fill_rainbow(leds + 8 * i, dValue, gHue, 30);
    fill_solid(leds + 8 * i + tValue, 1, CRGB::White);
    
  }
  FastLED.show(); 
  delay(2);      
}

实验场景图

 


89.jpg

实验的视频记录

优酷:https://v.youku.com/v_show/id_XNTkxOTQxODA2OA==.html?spm=a2hcb.playlsit.page.3

B站:https://www.bilibili.com/video/BV1ye4y1s7n1/?vd_source=98c6b1fc23b2787403d97f8d3cc0b7e5

实验场景图  动态图

 

动画116.gif

实验的视频记录

优酷:https://v.youku.com/v_show/id_XNTkxOTQxODEzNg==.html?spm=a2hcb.playlsit.page.1

B站:https://www.bilibili.com/video/BV1hg411q7yo/?vd_source=98c6b1fc23b2787403d97f8d3cc0b7e5

评论

user-avatar
  • 翟

    2022.01.11

    求 FHT.h 库文件 谢谢谢谢谢 2653458124@qq.com

    1
    • 驴友花雕

      驴友花雕2022.07.14

      不好意思,刚看到,还需要吗?

icon 他的勋章
    展开更多