10.2
国庆快乐
【目标任务】
这个帖子中,计划用VS Code基于ESP IDF修改小智源码,用行空板K10小智的两个全功能IO口外接两个360度舵机做一个自然语音控制的小车车。


本作业同样基于@闪电蘑菇大佬的视频教程开源的代码修改,致谢。【【小智AI】MCP神技解锁!语音自由控制舵机任意角度✨ (附源码解析)】 https://www.bilibili.com/video/BV1ng8gzHEuP/?share_source=copy_web&vd_source=bf02494b705eb3767ac801cc064e1021
作业测试视频:
因为我制作的小车没有给两个舵机独立供电,所以动力不强,要用较高速度才能使它灵活运动,同时舵机使用时间较长,性能下降,正反转速度有差异,所以前进后退走直线等问题要修改代码来解决。
建议使用两个性能相近的360舵机减少调试时间。
材料清单
- 行空板K10 X1
- 360度舵机 X2
- 锂电池 X1
- 小车车体+万向轮+车轮 X1
步骤1 组装小车与接线
用胶枪大法组装小车车。

硬件连接
左轮舵机信号线 GPIO1 --P0控制左轮速度和方向
右轮舵机信号线 GPIO2 --P1控制右轮速度和方向
软件环境
开发环境配置
安装VS Code + PlatformIO插件
配置ESP-IDF开发环境
克隆项目代码
项目依赖
ESP32-S3开发框架
LEDC PWM驱动
FreeRTOS实时操作系统
MCP(Model Context Protocol)服务
步骤2 代码逻辑
本项目基于ESP32-S3开发板,使用两个360度连续旋转舵机作为驱动轮,构建了一个可通过AI语音控制的智能小车。系统支持前进、后退、转向、原地旋转等基本运动功能。
使用方法
1. 基础控制命令
通过AI语音或MCP工具发送以下命令:
命令 功能 参数
self.car.forward 前进 speed: 0-100
self.car.backward 后退 speed: 0-100
self.car.turn_left 左转 speed: 0-100
self.car.turn_right 右转 speed: 0-100
self.car.pivot_left 原地左转 speed: 0-100
self.car.pivot_right 原地右转 speed: 0-100
self.car.stop 停止 无参数
self.car.set_speeds 独立控制 left_speed, right_speed
2. 语音控制示例
"让小车以100%的速度前进"
→ 调用:self.car.forward(speed=50)
"小车左转,速度80%"
→ 调用:self.car.turn_left(speed=30)
"立即停止小车"
→ 调用:self.car.stop()
代码结构
核心文件说明
├── config.h # 硬件引脚和参数配置
├── car_controller.h # 小车控制类声明
├── car_controller.cc # 小车控制实现
└── df_k10_board.cc # 系统主控板集成
1、config.h 硬件引脚和参数配置
我的舵机没用独立供电所以默认速度写成80。

#ifndef _BOARD_CONFIG_H_
#define _BOARD_CONFIG_H_
#include <driver/gpio.h>
#define AUDIO_INPUT_SAMPLE_RATE 24000
#define AUDIO_OUTPUT_SAMPLE_RATE 24000
#define AUDIO_INPUT_REFERENCE true
#define AUDIO_I2S_GPIO_MCLK GPIO_NUM_3
#define AUDIO_I2S_GPIO_WS GPIO_NUM_38
#define AUDIO_I2S_GPIO_BCLK GPIO_NUM_0
#define AUDIO_I2S_GPIO_DIN GPIO_NUM_39
#define AUDIO_I2S_GPIO_DOUT GPIO_NUM_45
#define AUDIO_CODEC_PA_PIN GPIO_NUM_NC
#define AUDIO_CODEC_I2C_SDA_PIN GPIO_NUM_47
#define AUDIO_CODEC_I2C_SCL_PIN GPIO_NUM_48
#define AUDIO_CODEC_ES8311_ADDR ES8311_CODEC_DEFAULT_ADDR
#define AUDIO_CODEC_ES7210_ADDR 0x23
#define BUILTIN_LED_GPIO GPIO_NUM_46
#define BOOT_BUTTON_GPIO GPIO_NUM_0
#define VOLUME_UP_BUTTON_GPIO GPIO_NUM_NC
#define VOLUME_DOWN_BUTTON_GPIO GPIO_NUM_NC
/* Expander */
#define DRV_IO_EXP_INPUT_MASK (IO_EXPANDER_PIN_NUM_2 | IO_EXPANDER_PIN_NUM_12)
#define DISPLAY_WIDTH 240
#define DISPLAY_HEIGHT 320
#define DISPLAY_MIRROR_X false
#define DISPLAY_MIRROR_Y true
#define DISPLAY_SWAP_XY false
#define DISPLAY_OFFSET_X 0
#define DISPLAY_OFFSET_Y 0
#define DISPLAY_BACKLIGHT_PIN GPIO_NUM_NC
#define DISPLAY_BACKLIGHT_OUTPUT_INVERT false
/* DFRobot K10 Camera pins */
#define PWDN_GPIO_NUM -1
#define RESET_GPIO_NUM -1
#define XCLK_GPIO_NUM 7
#define VSYNC_GPIO_NUM 4
#define HREF_GPIO_NUM 5
#define PCLK_GPIO_NUM 17
#define SIOD_GPIO_NUM 20
#define SIOC_GPIO_NUM 19
/* Camera pins */
#define CAMERA_PIN_PWDN PWDN_GPIO_NUM
#define CAMERA_PIN_RESET RESET_GPIO_NUM
#define CAMERA_PIN_XCLK XCLK_GPIO_NUM
#define CAMERA_PIN_SIOD SIOD_GPIO_NUM
#define CAMERA_PIN_SIOC SIOC_GPIO_NUM
#define CAMERA_PIN_D9 6
#define CAMERA_PIN_D8 15
#define CAMERA_PIN_D7 16
#define CAMERA_PIN_D6 18
#define CAMERA_PIN_D5 9
#define CAMERA_PIN_D4 11
#define CAMERA_PIN_D3 10
#define CAMERA_PIN_D2 8
#define CAMERA_PIN_VSYNC VSYNC_GPIO_NUM
#define CAMERA_PIN_HREF HREF_GPIO_NUM
#define CAMERA_PIN_PCLK PCLK_GPIO_NUM
#define XCLK_FREQ_HZ 20000000
// 小车舵机控制引脚
#define SERVO_LEFT_GPIO GPIO_NUM_1
#define SERVO_RIGHT_GPIO GPIO_NUM_2
// 360度连续旋转舵机参数
#define SERVO_360_STOP_US 1500 // 停止脉宽 (1.5ms)
#define SERVO_360_FULL_CW_US 1300 // 全速顺时针 (1.3ms)
#define SERVO_360_FULL_CCW_US 1700 // 全速逆时针 (1.7ms)
#define SERVO_360_MIN_US 1000 // 最小脉宽 (1.0ms)
#define SERVO_360_MAX_US 2000 // 最大脉宽 (2.0ms)
// 小车运动参数
#define CAR_MAX_SPEED 100 // 最大速度 (百分比)
#define CAR_MIN_SPEED 0 // 最小速度
#define CAR_DEFAULT_SPEED 50 // 默认速度
#endif // _BOARD_CONFIG_H_
2、car_controller.h 小车控制类声明

#ifndef __CAR_CONTROLLER_H__
#define __CAR_CONTROLLER_H__
#include <driver/ledc.h>
#include <driver/gpio.h>
#include <esp_log.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <freertos/queue.h>
#include <functional>
#include "config.h"
#include "mcp_server.h"
class CarController {
public:
CarController(gpio_num_t left_servo_pin, gpio_num_t right_servo_pin);
~CarController();
// 初始化方法
bool Initialize();
void InitializeTools();
// 基本运动控制
void MoveForward(int speed = CAR_DEFAULT_SPEED);
void MoveBackward(int speed = CAR_DEFAULT_SPEED);
void TurnLeft(int speed = CAR_DEFAULT_SPEED);
void TurnRight(int speed = CAR_DEFAULT_SPEED);
void Stop();
void PivotLeft(int speed = CAR_DEFAULT_SPEED); // 原地左转
void PivotRight(int speed = CAR_DEFAULT_SPEED); // 原地右转
// 高级运动控制
void SetSpeeds(int left_speed, int right_speed);
void Curve(int left_speed, int right_speed);
// 状态查询
bool IsMoving() const { return is_moving_; }
int GetLeftSpeed() const { return left_speed_; }
int GetRightSpeed() const { return right_speed_; }
private:
// 硬件相关
gpio_num_t left_servo_pin_;
gpio_num_t right_servo_pin_;
ledc_channel_t left_ledc_channel_;
ledc_channel_t right_ledc_channel_;
// 状态变量
int left_speed_;
int right_speed_;
bool is_moving_;
// 私有方法
void WriteSpeed(gpio_num_t pin, ledc_channel_t channel, int speed);
uint32_t SpeedToPulseWidth(int speed);
int ConstrainSpeed(int speed) const;
// 设置LEDC通道
bool SetupServo(gpio_num_t pin, ledc_channel_t channel, ledc_timer_t timer);
};
#endif // __CAR_CONTROLLER_H__
3、car_controller.cc 小车控制实现
如果运动模式不对在下面这块代码中调整。

#include "car_controller.h"
#include <cmath>
#define TAG "CarController"
CarController::CarController(gpio_num_t left_servo_pin, gpio_num_t right_servo_pin)
: left_servo_pin_(left_servo_pin)
, right_servo_pin_(right_servo_pin)
, left_ledc_channel_(LEDC_CHANNEL_0)
, right_ledc_channel_(LEDC_CHANNEL_1)
, left_speed_(0)
, right_speed_(0)
, is_moving_(false) {
}
CarController::~CarController() {
Stop();
}
bool CarController::Initialize() {
ESP_LOGI(TAG, "初始化小车控制器");
ESP_LOGI(TAG, "左轮舵机引脚: %d, 右轮舵机引脚: %d", left_servo_pin_, right_servo_pin_);
// 配置LEDC定时器 (两个舵机共用同一个定时器)
ledc_timer_config_t timer_config = {
.speed_mode = LEDC_LOW_SPEED_MODE,
.duty_resolution = LEDC_TIMER_14_BIT,
.timer_num = LEDC_TIMER_0,
.freq_hz = 50, // 50Hz for servo
.clk_cfg = LEDC_AUTO_CLK
};
esp_err_t ret = ledc_timer_config(&timer_config);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "LEDC定时器配置失败: %s", esp_err_to_name(ret));
return false;
}
// 设置左轮舵机
if (!SetupServo(left_servo_pin_, left_ledc_channel_, LEDC_TIMER_0)) {
ESP_LOGE(TAG, "左轮舵机配置失败");
return false;
}
// 设置右轮舵机
if (!SetupServo(right_servo_pin_, right_ledc_channel_, LEDC_TIMER_0)) {
ESP_LOGE(TAG, "右轮舵机配置失败");
return false;
}
// 初始停止状态
Stop();
ESP_LOGI(TAG, "小车控制器初始化成功");
return true;
}
bool CarController::SetupServo(gpio_num_t pin, ledc_channel_t channel, ledc_timer_t timer) {
ledc_channel_config_t channel_config = {
.gpio_num = pin,
.speed_mode = LEDC_LOW_SPEED_MODE,
.channel = channel,
.intr_type = LEDC_INTR_DISABLE,
.timer_sel = timer,
.duty = 0,
.hpoint = 0
};
esp_err_t ret = ledc_channel_config(&channel_config);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "LEDC通道配置失败: %s", esp_err_to_name(ret));
return false;
}
return true;
}
void CarController::InitializeTools() {
auto& mcp_server = McpServer::GetInstance();
ESP_LOGI(TAG, "开始注册小车MCP工具...");
// 前进
mcp_server.AddTool("self.car.forward",
"控制小车前进。speed: 速度百分比(0-100)",
PropertyList({Property("speed", kPropertyTypeInteger, CAR_DEFAULT_SPEED, 0, 100)}),
[this](const PropertyList& properties) -> ReturnValue {
int speed = properties["speed"].value<int>();
MoveForward(speed);
return "小车前进,速度: " + std::to_string(speed) + "%";
});
// 后退
mcp_server.AddTool("self.car.backward",
"控制小车后退。speed: 速度百分比(0-100)",
PropertyList({Property("speed", kPropertyTypeInteger, CAR_DEFAULT_SPEED, 0, 100)}),
[this](const PropertyList& properties) -> ReturnValue {
int speed = properties["speed"].value<int>();
MoveBackward(speed);
return "小车后退,速度: " + std::to_string(speed) + "%";
});
// 左转
mcp_server.AddTool("self.car.turn_left",
"控制小车左转。speed: 速度百分比(0-100)",
PropertyList({Property("speed", kPropertyTypeInteger, CAR_DEFAULT_SPEED, 0, 100)}),
[this](const PropertyList& properties) -> ReturnValue {
int speed = properties["speed"].value<int>();
TurnLeft(speed);
return "小车左转,速度: " + std::to_string(speed) + "%";
});
// 右转
mcp_server.AddTool("self.car.turn_right",
"控制小车右转。speed: 速度百分比(0-100)",
PropertyList({Property("speed", kPropertyTypeInteger, CAR_DEFAULT_SPEED, 0, 100)}),
[this](const PropertyList& properties) -> ReturnValue {
int speed = properties["speed"].value<int>();
TurnRight(speed);
return "小车右转,速度: " + std::to_string(speed) + "%";
});
// 停止
mcp_server.AddTool("self.car.stop",
"立即停止小车",
PropertyList(),
[this](const PropertyList& properties) -> ReturnValue {
Stop();
return "小车已停止";
});
// 原地左转
mcp_server.AddTool("self.car.pivot_left",
"小车原地左转。speed: 速度百分比(0-100)",
PropertyList({Property("speed", kPropertyTypeInteger, CAR_DEFAULT_SPEED, 0, 100)}),
[this](const PropertyList& properties) -> ReturnValue {
int speed = properties["speed"].value<int>();
PivotLeft(speed);
return "小车原地左转,速度: " + std::to_string(speed) + "%";
});
// 原地右转
mcp_server.AddTool("self.car.pivot_right",
"小车原地右转。speed: 速度百分比(0-100)",
PropertyList({Property("speed", kPropertyTypeInteger, CAR_DEFAULT_SPEED, 0, 100)}),
[this](const PropertyList& properties) -> ReturnValue {
int speed = properties["speed"].value<int>();
PivotRight(speed);
return "小车原地右转,速度: " + std::to_string(speed) + "%";
});
// 设置独立速度
mcp_server.AddTool("self.car.set_speeds",
"独立设置左右轮速度。left_speed: 左轮速度(-100到100), right_speed: 右轮速度(-100到100)",
PropertyList({
Property("left_speed", kPropertyTypeInteger, 0, -100, 100),
Property("right_speed", kPropertyTypeInteger, 0, -100, 100)
}),
[this](const PropertyList& properties) -> ReturnValue {
int left_speed = properties["left_speed"].value<int>();
int right_speed = properties["right_speed"].value<int>();
SetSpeeds(left_speed, right_speed);
return "设置速度 - 左轮: " + std::to_string(left_speed) + "%, 右轮: " + std::to_string(right_speed) + "%";
});
// 获取状态
mcp_server.AddTool("self.car.get_status",
"获取小车当前状态",
PropertyList(),
[this](const PropertyList& properties) -> ReturnValue {
std::string status = "{\"left_speed\":" + std::to_string(left_speed_) +
",\"right_speed\":" + std::to_string(right_speed_) +
",\"moving\":" + (is_moving_ ? "true" : "false") + "}";
return status;
});
ESP_LOGI(TAG, "小车MCP工具注册完成");
}
void CarController::MoveForward(int speed) {
speed = ConstrainSpeed(speed);
ESP_LOGI(TAG, "前进,速度: %d%%", speed);
SetSpeeds(-speed, speed);
}
void CarController::MoveBackward(int speed) {
speed = ConstrainSpeed(speed);
ESP_LOGI(TAG, "后退,速度: %d%%", speed);
SetSpeeds(speed, -speed);
}
void CarController::TurnLeft(int speed) {
speed = ConstrainSpeed(speed);
ESP_LOGI(TAG, "左转,速度: %d%%", speed);
SetSpeeds(-speed / 2, speed); // 右轮快,左轮慢
}
void CarController::TurnRight(int speed) {
speed = ConstrainSpeed(speed);
ESP_LOGI(TAG, "右转,速度: %d%%", speed);
SetSpeeds(-speed, speed / 2); // 左轮快,右轮慢
}
void CarController::PivotLeft(int speed) {
speed = ConstrainSpeed(speed);
ESP_LOGI(TAG, "原地左转,速度: %d%%", speed);
SetSpeeds(speed, speed); // 左轮后退,右轮前进
}
void CarController::PivotRight(int speed) {
speed = ConstrainSpeed(speed);
ESP_LOGI(TAG, "原地右转,速度: %d%%", speed);
SetSpeeds(-speed, -speed); // 左轮前进,右轮后退
}
void CarController::Stop() {
ESP_LOGI(TAG, "停止");
SetSpeeds(0, 0);
}
void CarController::SetSpeeds(int left_speed, int right_speed) {
left_speed_ = ConstrainSpeed(left_speed);
right_speed_ = ConstrainSpeed(right_speed);
is_moving_ = (left_speed_ != 0 || right_speed_ != 0);
WriteSpeed(left_servo_pin_, left_ledc_channel_, left_speed_);
WriteSpeed(right_servo_pin_, right_ledc_channel_, right_speed_);
ESP_LOGI(TAG, "设置速度 - 左轮: %d%%, 右轮: %d%%", left_speed_, right_speed_);
}
void CarController::Curve(int left_speed, int right_speed) {
SetSpeeds(left_speed, right_speed);
}
void CarController::WriteSpeed(gpio_num_t pin, ledc_channel_t channel, int speed) {
uint32_t pulse_width = SpeedToPulseWidth(speed);
ledc_set_duty(LEDC_LOW_SPEED_MODE, channel, pulse_width);
ledc_update_duty(LEDC_LOW_SPEED_MODE, channel);
}
uint32_t CarController::SpeedToPulseWidth(int speed) {
// 速度范围: -100 到 100
// 对应脉宽: 1700us 到 1300us (1.7ms 到 1.3ms)
// 停止: 1500us (1.5ms)
float pulse_width_us;
if (speed == 0) {
pulse_width_us = SERVO_360_STOP_US;
} else if (speed > 0) {
// 正向速度: 0-100 -> 1500-1300us
pulse_width_us = SERVO_360_STOP_US - (speed / 100.0f) * (SERVO_360_STOP_US - SERVO_360_FULL_CW_US);
} else {
// 反向速度: 0-(-100) -> 1500-1700us
pulse_width_us = SERVO_360_STOP_US + (abs(speed) / 100.0f) * (SERVO_360_FULL_CCW_US - SERVO_360_STOP_US);
}
// 限制在安全范围内
if (pulse_width_us < SERVO_360_MIN_US) pulse_width_us = SERVO_360_MIN_US;
if (pulse_width_us > SERVO_360_MAX_US) pulse_width_us = SERVO_360_MAX_US;
// 转换为14位PWM比较值
float duty_cycle = pulse_width_us / 20000.0f; // 20ms周期
uint32_t compare_value = (uint32_t)(duty_cycle * 16383.0f);
ESP_LOGD(TAG, "速度 %d%% -> 脉宽 %.1fus -> 比较值 %lu", speed, pulse_width_us, compare_value);
return compare_value;
}
int CarController::ConstrainSpeed(int speed) const {
if (speed < -CAR_MAX_SPEED) return -CAR_MAX_SPEED;
if (speed > CAR_MAX_SPEED) return CAR_MAX_SPEED;
return speed;
}
4、df_k10_board.cc 系统主控板集成
开头导入控制类声明文件

控制器成员变量声明

初始化函数

IoT功能初始化中的小车注册

构造函数中的初始化调用

析构函数中的资源清理

#include "wifi_board.h"
#include "k10_audio_codec.h"
#include "display/lcd_display.h"
#include "esp_lcd_ili9341.h"
#include "led_control.h"
#include "font_awesome_symbols.h"
#include "application.h"
#include "button.h"
#include "config.h"
#include "esp32_camera.h"
#include "led/circular_strip.h"
#include "assets/lang_config.h"
#include <esp_log.h>
#include <esp_lcd_panel_vendor.h>
#include <driver/i2c_master.h>
#include <driver/spi_common.h>
#include <wifi_station.h>
#include "esp_io_expander_tca95xx_16bit.h"
#include "car_controller.h" // car控制类声明
#define TAG "DF-K10"
LV_FONT_DECLARE(font_puhui_20_4);
LV_FONT_DECLARE(font_awesome_20_4);
class Df_K10Board : public WifiBoard {
private:
i2c_master_bus_handle_t i2c_bus_;
esp_io_expander_handle_t io_expander;
LcdDisplay *display_;
button_handle_t btn_a;
button_handle_t btn_b;
Esp32Camera* camera_;
CarController* car_controller_; // 小车控制器
button_driver_t* btn_a_driver_ = nullptr;
button_driver_t* btn_b_driver_ = nullptr;
CircularStrip* led_strip_;
static Df_K10Board* instance_;
void InitializeI2c() {
// Initialize I2C peripheral
i2c_master_bus_config_t i2c_bus_cfg = {
.i2c_port = (i2c_port_t)1,
.sda_io_num = AUDIO_CODEC_I2C_SDA_PIN,
.scl_io_num = AUDIO_CODEC_I2C_SCL_PIN,
.clk_source = I2C_CLK_SRC_DEFAULT,
.glitch_ignore_cnt = 7,
.intr_priority = 0,
.trans_queue_depth = 0,
.flags = {
.enable_internal_pullup = 1,
},
};
ESP_ERROR_CHECK(i2c_new_master_bus(&i2c_bus_cfg, &i2c_bus_));
}
void InitializeSpi() {
spi_bus_config_t buscfg = {};
buscfg.mosi_io_num = GPIO_NUM_21;
buscfg.miso_io_num = GPIO_NUM_NC;
buscfg.sclk_io_num = GPIO_NUM_12;
buscfg.quadwp_io_num = GPIO_NUM_NC;
buscfg.quadhd_io_num = GPIO_NUM_NC;
buscfg.max_transfer_sz = DISPLAY_WIDTH * DISPLAY_HEIGHT * sizeof(uint16_t);
ESP_ERROR_CHECK(spi_bus_initialize(SPI3_HOST, &buscfg, SPI_DMA_CH_AUTO));
}
esp_err_t IoExpanderSetLevel(uint16_t pin_mask, uint8_t level) {
return esp_io_expander_set_level(io_expander, pin_mask, level);
}
uint8_t IoExpanderGetLevel(uint16_t pin_mask) {
uint32_t pin_val = 0;
esp_io_expander_get_level(io_expander, DRV_IO_EXP_INPUT_MASK, &pin_val);
pin_mask &= DRV_IO_EXP_INPUT_MASK;
return (uint8_t)((pin_val & pin_mask) ? 1 : 0);
}
void InitializeIoExpander() {
esp_io_expander_new_i2c_tca95xx_16bit(
i2c_bus_, ESP_IO_EXPANDER_I2C_TCA9555_ADDRESS_000, &io_expander);
esp_err_t ret;
ret = esp_io_expander_print_state(io_expander);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Print state failed: %s", esp_err_to_name(ret));
}
ret = esp_io_expander_set_dir(io_expander, IO_EXPANDER_PIN_NUM_0,
IO_EXPANDER_OUTPUT);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Set direction failed: %s", esp_err_to_name(ret));
}
ret = esp_io_expander_set_level(io_expander, 0, 1);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Set level failed: %s", esp_err_to_name(ret));
}
ret = esp_io_expander_set_dir(
io_expander, DRV_IO_EXP_INPUT_MASK,
IO_EXPANDER_INPUT);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Set direction failed: %s", esp_err_to_name(ret));
}
}
void InitializeButtons() {
instance_ = this;
// Button A
button_config_t btn_a_config = {
.long_press_time = 1000,
.short_press_time = 0
};
btn_a_driver_ = (button_driver_t*)calloc(1, sizeof(button_driver_t));
btn_a_driver_->enable_power_save = false;
btn_a_driver_->get_key_level = [](button_driver_t *button_driver) -> uint8_t {
return !instance_->IoExpanderGetLevel(IO_EXPANDER_PIN_NUM_2);
};
ESP_ERROR_CHECK(iot_button_create(&btn_a_config, btn_a_driver_, &btn_a));
iot_button_register_cb(btn_a, BUTTON_SINGLE_CLICK, nullptr, [](void* button_handle, void* usr_data) {
auto self = static_cast<Df_K10Board*>(usr_data);
auto& app = Application::GetInstance();
if (app.GetDeviceState() == kDeviceStateStarting && !WifiStation::GetInstance().IsConnected()) {
self->ResetWifiConfiguration();
}
app.ToggleChatState();
}, this);
iot_button_register_cb(btn_a, BUTTON_LONG_PRESS_START, nullptr, [](void* button_handle, void* usr_data) {
auto self = static_cast<Df_K10Board*>(usr_data);
auto codec = self->GetAudioCodec();
auto volume = codec->output_volume() - 10;
if (volume < 0) {
volume = 0;
}
codec->SetOutputVolume(volume);
self->GetDisplay()->ShowNotification(Lang::Strings::VOLUME + std::to_string(volume));
}, this);
// Button B
button_config_t btn_b_config = {
.long_press_time = 1000,
.short_press_time = 0
};
btn_b_driver_ = (button_driver_t*)calloc(1, sizeof(button_driver_t));
btn_b_driver_->enable_power_save = false;
btn_b_driver_->get_key_level = [](button_driver_t *button_driver) -> uint8_t {
return !instance_->IoExpanderGetLevel(IO_EXPANDER_PIN_NUM_12);
};
ESP_ERROR_CHECK(iot_button_create(&btn_b_config, btn_b_driver_, &btn_b));
iot_button_register_cb(btn_b, BUTTON_SINGLE_CLICK, nullptr, [](void* button_handle, void* usr_data) {
auto self = static_cast<Df_K10Board*>(usr_data);
auto& app = Application::GetInstance();
if (app.GetDeviceState() == kDeviceStateStarting && !WifiStation::GetInstance().IsConnected()) {
self->ResetWifiConfiguration();
}
app.ToggleChatState();
}, this);
iot_button_register_cb(btn_b, BUTTON_LONG_PRESS_START, nullptr, [](void* button_handle, void* usr_data) {
auto self = static_cast<Df_K10Board*>(usr_data);
auto codec = self->GetAudioCodec();
auto volume = codec->output_volume() + 10;
if (volume > 100) {
volume = 100;
}
codec->SetOutputVolume(volume);
self->GetDisplay()->ShowNotification(Lang::Strings::VOLUME + std::to_string(volume));
}, this);
}
void InitializeCamera() {
camera_config_t config = {};
config.ledc_channel = LEDC_CHANNEL_2; // LEDC通道选择 用于生成XCLK时钟 但是S3不用
config.ledc_timer = LEDC_TIMER_2; // LEDC timer选择 用于生成XCLK时钟 但是S3不用
config.pin_d0 = CAMERA_PIN_D2;
config.pin_d1 = CAMERA_PIN_D3;
config.pin_d2 = CAMERA_PIN_D4;
config.pin_d3 = CAMERA_PIN_D5;
config.pin_d4 = CAMERA_PIN_D6;
config.pin_d5 = CAMERA_PIN_D7;
config.pin_d6 = CAMERA_PIN_D8;
config.pin_d7 = CAMERA_PIN_D9;
config.pin_xclk = CAMERA_PIN_XCLK;
config.pin_pclk = CAMERA_PIN_PCLK;
config.pin_vsync = CAMERA_PIN_VSYNC;
config.pin_href = CAMERA_PIN_HREF;
config.pin_sccb_sda = -1; // 这里如果写-1 表示使用已经初始化的I2C接口
config.pin_sccb_scl = CAMERA_PIN_SIOC;
config.sccb_i2c_port = 1; // 这里如果写1 默认使用I2C1
config.pin_pwdn = CAMERA_PIN_PWDN;
config.pin_reset = CAMERA_PIN_RESET;
config.xclk_freq_hz = XCLK_FREQ_HZ;
config.pixel_format = PIXFORMAT_RGB565;
config.frame_size = FRAMESIZE_VGA;
config.jpeg_quality = 12;
config.fb_count = 1;
config.fb_location = CAMERA_FB_IN_PSRAM;
config.grab_mode = CAMERA_GRAB_WHEN_EMPTY;
camera_ = new Esp32Camera(config);
}
void InitializeIli9341Display() {
esp_lcd_panel_io_handle_t panel_io = nullptr;
esp_lcd_panel_handle_t panel = nullptr;
// 液晶屏控制IO初始化
ESP_LOGD(TAG, "Install panel IO");
esp_lcd_panel_io_spi_config_t io_config = {};
io_config.cs_gpio_num = GPIO_NUM_14;
io_config.dc_gpio_num = GPIO_NUM_13;
io_config.spi_mode = 0;
io_config.pclk_hz = 40 * 1000 * 1000;
io_config.trans_queue_depth = 10;
io_config.lcd_cmd_bits = 8;
io_config.lcd_param_bits = 8;
ESP_ERROR_CHECK(esp_lcd_new_panel_io_spi(SPI3_HOST, &io_config, &panel_io));
// 初始化液晶屏驱动芯片
ESP_LOGD(TAG, "Install LCD driver");
esp_lcd_panel_dev_config_t panel_config = {};
panel_config.reset_gpio_num = GPIO_NUM_NC;
panel_config.bits_per_pixel = 16;
panel_config.color_space = ESP_LCD_COLOR_SPACE_BGR;
ESP_ERROR_CHECK(esp_lcd_new_panel_ili9341(panel_io, &panel_config, &panel));
ESP_ERROR_CHECK(esp_lcd_panel_reset(panel));
ESP_ERROR_CHECK(esp_lcd_panel_init(panel));
ESP_ERROR_CHECK(esp_lcd_panel_invert_color(panel, DISPLAY_BACKLIGHT_OUTPUT_INVERT));
ESP_ERROR_CHECK(esp_lcd_panel_swap_xy(panel, DISPLAY_SWAP_XY));
ESP_ERROR_CHECK(esp_lcd_panel_mirror(panel, DISPLAY_MIRROR_X, DISPLAY_MIRROR_Y));
ESP_ERROR_CHECK(esp_lcd_panel_disp_on_off(panel, true));
display_ = new SpiLcdDisplay(panel_io, panel,
DISPLAY_WIDTH, DISPLAY_HEIGHT, DISPLAY_OFFSET_X, DISPLAY_OFFSET_Y, DISPLAY_MIRROR_X, DISPLAY_MIRROR_Y, DISPLAY_SWAP_XY,
{
.text_font = &font_puhui_20_4,
.icon_font = &font_awesome_20_4,
.emoji_font = font_emoji_64_init(),
});
}
void InitializeCarController() {
ESP_LOGI(TAG, "初始化两轮小车控制器");
car_controller_ = new CarController(SERVO_LEFT_GPIO, SERVO_RIGHT_GPIO);
if (!car_controller_->Initialize()) {
ESP_LOGE(TAG, "小车控制器初始化失败");
delete car_controller_;
car_controller_ = nullptr;
return;
}
ESP_LOGI(TAG, "两轮小车控制器初始化完成");
}
// 物联网初始化,添加对 AI 可见设备
void InitializeIot() {
led_strip_ = new CircularStrip(BUILTIN_LED_GPIO, 3);
new LedStripControl(led_strip_);
// 注册小车MCP工具
if (car_controller_ != nullptr) {
car_controller_->InitializeTools();
}
}
public:
Df_K10Board() :
car_controller_(nullptr) {
InitializeI2c();
InitializeIoExpander();
InitializeSpi();
InitializeIli9341Display();
InitializeButtons();
InitializeCarController(); // 添加小车初始化
InitializeIot();
InitializeCamera();
}
virtual ~Df_K10Board() {
if (car_controller_) {
delete car_controller_;
}
}
virtual Led* GetLed() override {
return led_strip_;
}
virtual AudioCodec *GetAudioCodec() override {
static K10AudioCodec audio_codec(
i2c_bus_,
AUDIO_INPUT_SAMPLE_RATE,
AUDIO_OUTPUT_SAMPLE_RATE,
AUDIO_I2S_GPIO_MCLK,
AUDIO_I2S_GPIO_BCLK,
AUDIO_I2S_GPIO_WS,
AUDIO_I2S_GPIO_DOUT,
AUDIO_I2S_GPIO_DIN,
AUDIO_CODEC_PA_PIN,
AUDIO_CODEC_ES8311_ADDR,
AUDIO_CODEC_ES7210_ADDR,
AUDIO_INPUT_REFERENCE);
return &audio_codec;
}
virtual Camera* GetCamera() override {
return camera_;
}
virtual Display *GetDisplay() override {
return display_;
}
};
DECLARE_BOARD(Df_K10Board);
Df_K10Board* Df_K10Board::instance_ = nullptr;
【小结】
本作业展示了如何将普通的360度舵机改造成智能小车的驱动系统,通过ESP32的精确PWM控制和MCP协议的AI集成,实现了语音控制的智能移动平台。
同时,语音控制在噪声大的小车运行环境中会显得比较耳背哦。
感谢DeepSeek在代码编写中的支持。
评论