回到首页 返回首页
回到顶部 回到顶部
返回上一页 返回上一页

【书生大模型实战营】InternLM 论文分类微调实践(XTuner 版) 中等

头像 JOVI 2025.07.18 27 1

1. 闯关任务

端侧小模型论文分类微调练习打榜赛 赛中提交结果超过基线,并提交复现文档。

2. XTuner介绍

一句话介绍XTuner:

XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。

核心特点:

高效:支持在有限资源下微调大模型,如在8GB显存上微调7B参数模型,也支持多节点微调70B+模型;自动分发高性能算子加速训练;兼容DeepSpeed优化策略。

灵活:支持多种大语言模型(如InternLM、Llama、ChatGLM等)和多模态模型;支持多种数据格式;支持QLoRA、LoRA、全量参数微调等多种微调算法。

全能:支持增量预训练、指令微调与Agent微调;预定义多种对话模板;训练所得模型可无缝接入部署工具LMDeploy和评测工具OpenCompass。

3. 环境安装

创建开发机界面选择镜像为 Cuda12.2-conda,并选择 GPU 为50% A100(越大越好)。

Conda 管理环境

conda activate /root/share/pre_envs/pytorch2.3.1cu12.1
pip install 'xtuner[deepspeed]' timm==1.0.9
pip install transformers==4.48.0
pip install modelscope

输入xtuner list-cfg检验环境安装

image.png

4. 数据获取

关于数据详情参考InternLM论文分类微调实践(swift 版)数据部分

原本的数据是swift版本,因此需要代码转化。这里直接贴现成的数据sftdata.jsonl给大家:

convert_to_alpaca.py(数据转化仅供参考)

image.png

5. 训练

链接模型位置命令

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat ./

微调脚本

internlm2_5_chat_7b_qlora_alpaca_e3_copy.py

image.png

pretrained_model_name_or_path alpaca_en_path 只需要注意34和38行模型、数据位置就好了。

代码
# Copyright (c) OpenMMLab. All rights reserved.
# —— 动态补丁:兼容 transformers>=4.48 ——
from transformers.cache_utils import DynamicCache     # 1. 引入类
if not hasattr(DynamicCache, "get_max_length"):       # 2. 判断是否缺失
    DynamicCache.get_max_length = DynamicCache.get_max_cache_shape  # 3. 补一个别名
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (
    CheckpointHook,
    DistSamplerSeedHook,
    IterTimerHook,
    LoggerHook,
    ParamSchedulerHook,
)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
from xtuner.engine.hooks import (
    DatasetInfoHook,
    EvaluateChatHook,
    VarlenAttnArgsToMessageHubHook,
)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.parallel.sequence import SequenceParallelSampler
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE

#######################################################################
#                          PART 1  Settings                           #
#######################################################################
# Model
pretrained_model_name_or_path = "./internlm2_5-7b-chat"
use_varlen_attn = False

# Data
alpaca_en_path = "/root/L1G4/sftdata.jsonl"#换成自己的数据路径
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 1024
pack_to_max_length = True

# parallel
sequence_parallel_size = 1

# Scheduler & Optimizer
batch_size = 2  # per_device
accumulative_counts = 1
accumulative_counts *= sequence_parallel_size
dataloader_num_workers = 0
max_epochs = 1
optim_type = AdamW
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1  # grad clip
warmup_ratio = 0.03

# Save
save_steps = 50
save_total_limit = 2  # Maximum checkpoints to keep (-1 means unlimited)

# Evaluate the generation performance during the training
evaluation_freq = 50
SYSTEM = SYSTEM_TEMPLATE.alpaca
evaluation_inputs = ["请给我介绍五个上海的景点", "Please tell me five scenic spots in Shanghai"]

#######################################################################
#                      PART 2  Model & Tokenizer                      #
#######################################################################
tokenizer = dict(
    type=AutoTokenizer.from_pretrained,
    pretrained_model_name_or_path=pretrained_model_name_or_path,
    trust_remote_code=True,
    padding_side="right",
)

model = dict(
    type=SupervisedFinetune,
    use_varlen_attn=use_varlen_attn,
    llm=dict(
        type=AutoModelForCausalLM.from_pretrained,
        pretrained_model_name_or_path=pretrained_model_name_or_path,
        trust_remote_code=True,
        torch_dtype=torch.float16,
        quantization_config=dict(
            type=BitsAndBytesConfig,
            load_in_4bit=True,
            load_in_8bit=False,
            llm_int8_threshold=6.0,
            llm_int8_has_fp16_weight=False,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        ),
    ),
    lora=dict(
        type=LoraConfig,
        r=64,
        lora_alpha=16,
        lora_dropout=0.1,
        bias="none",
        task_type="CAUSAL_LM",
    ),
)

#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
alpaca_en = dict(
    type=process_hf_dataset,
    dataset=dict(type=load_dataset, path='json', data_files=alpaca_en_path),
    tokenizer=tokenizer,
    max_length=max_length,
    dataset_map_fn=alpaca_map_fn,
    template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),
    remove_unused_columns=True,
    shuffle_before_pack=True,
    pack_to_max_length=pack_to_max_length,
    use_varlen_attn=use_varlen_attn,
)

sampler = SequenceParallelSampler if sequence_parallel_size > 1 else DefaultSampler
train_dataloader = dict(
    batch_size=batch_size,
    num_workers=dataloader_num_workers,
    dataset=alpaca_en,
    sampler=dict(type=sampler, shuffle=True),
    collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn),
)

#######################################################################
#                    PART 4  Scheduler & Optimizer                    #
#######################################################################
# optimizer
optim_wrapper = dict(
    type=AmpOptimWrapper,
    optimizer=dict(type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
    clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
    accumulative_counts=accumulative_counts,
    loss_scale="dynamic",
    dtype="float16",
)

# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md  # noqa: E501
param_scheduler = [
    dict(
        type=LinearLR,
        start_factor=1e-5,
        by_epoch=True,
        begin=0,
        end=warmup_ratio * max_epochs,
        convert_to_iter_based=True,
    ),
    dict(
        type=CosineAnnealingLR,
        eta_min=0.0,
        by_epoch=True,
        begin=warmup_ratio * max_epochs,
        end=max_epochs,
        convert_to_iter_based=True,
    ),
]

# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)

#######################################################################
#                           PART 5  Runtime                           #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
    dict(type=DatasetInfoHook, tokenizer=tokenizer),
    dict(
        type=EvaluateChatHook,
        tokenizer=tokenizer,
        every_n_iters=evaluation_freq,
        evaluation_inputs=evaluation_inputs,
        system=SYSTEM,
        prompt_template=prompt_template,
    ),
]

if use_varlen_attn:
    custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]

# configure default hooks
default_hooks = dict(
    # record the time of every iteration.
    timer=dict(type=IterTimerHook),
    # print log every 10 iterations.
    logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
    # enable the parameter scheduler.
    param_scheduler=dict(type=ParamSchedulerHook),
    # save checkpoint per `save_steps`.
    checkpoint=dict(
        type=CheckpointHook,
        by_epoch=False,
        interval=save_steps,
        max_keep_ckpts=save_total_limit,
    ),
    # set sampler seed in distributed evrionment.
    sampler_seed=dict(type=DistSamplerSeedHook),
)

# configure environment
env_cfg = dict(
    # whether to enable cudnn benchmark
    cudnn_benchmark=False,
    # set multi process parameters
    mp_cfg=dict(mp_start_method="fork", opencv_num_threads=0),
    # set distributed parameters
    dist_cfg=dict(backend="nccl"),
)

# set visualizer
visualizer = None

# set log level
log_level = "INFO"

# load from which checkpoint
load_from = None

# whether to resume training from the loaded checkpoint
resume = False

# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)

# set log processor
log_processor = dict(by_epoch=False)

启动

启动脚本

cd #你的项目根目录

xtuner train internlm2_5_chat_7b_qlora_alpaca_e3_copy.py --deepspeed deepspeed_zero1

image.png

合并

在完成XTuner的微调后,需要进行两个步骤:首先将PTH格式的模型转换为HuggingFace格式,然后将adapter与基础模型合并。

按照以下步骤操作:

1. 将PTH格式转换为HuggingFace格式

cd #你的项目根目录
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf internlm2_5_chat_7b_qlora_alpaca_e3_copy.py ./work_dirs/internlm2_5_chat_7b_qlora_alpaca_e3_copy/iter_xx.pth ./work_dirs/hf

image.png

2. 合并adapter和基础模型

cd #你的项目根目录

export MKL_THREADING_LAYER=GNU

xtuner convert merge ./internlm2_5-7b-chat ./work_dirs/hf ./work_dirs/merged --max-shard-size 2GB

image.png

完成这两个步骤后,合并好的模型将保存在./work_dirs/merged目录下,你可以直接使用这个模型进行推理了。

7. 提交模型完成评测

将微调好的模型上传模型至 ModelScope 模型库 ,有 ① swift 指令 ② ModeScope 官方 Python SDK 两种方法,二选一即可。

成功上传至ModelScope 模型库后,把hub_model_id(下面会告诉大家如何获得)填写至信息提交单中,后台会自动拉取并跑评测,因此稍等一段时间就可以在榜单上看到自己的成绩。

7.2 ModeScope 官方 Python SDK

pip install modelscope

【上传脚本】

image.png

代码
from modelscope.hub.api import HubApi
from modelscope.hub.constants import Licenses, ModelVisibility

# 配置基本信息
YOUR_ACCESS_TOKEN = 'xxx(从modelscope获取,即上节的hub_token)'
api = HubApi()
api.login(YOUR_ACCESS_TOKEN)

# 取名字
owner_name = 'xxx'    # ModelScope 的用户名,需根据自己情况修改
model_name = 'xxx'    # 为模型库取个响亮优雅又好听的名字,需根据自己情况修改
model_id = f"{owner_name}/{model_name}"

# 创建模型库,若已通过6.1节的ModelScope网页端创建,此段代码可忽略
api.create_model(
     model_id,
     visibility=ModelVisibility.PUBLIC,
     license=Licenses.APACHE_V2,
     chinese_name=f"{owner_name}的论文分类打榜赛模型"
    )

# 上传模型
api.upload_folder(
    repo_id=f"{owner_name}/{model_name}",
    folder_path='/root/path/to/your/model',    # 微调后模型的文件夹名称
    commit_message='upload model folder to repo',    # 写点开心的上传信息
)

【参考】

https://www.modelscope.cn/docs/models/upload

上传成功后如下图:

image.png

 

7.3 填链接提交模型

记住你的“Modelscope账号名称/模型库名称“,如“Shanghai_AI_Laboratory/internlm3-8b-instruct”,然后填写信息提交单等待成绩榜单更新吧!!!如果完成了测评,会在成绩榜单最下面的提交记录中,查找自己的uid进行查询。

 

信息提交单:https://aicarrier.feishu.cn/share/base/form/shrcn0JkjbZKMeMPw04uHCWc5Pg

成绩榜单(动态更新中):

 

各个模型的基线成绩如下图,看看你的分数如何吧!!

d0332c974df400d55c586d0bcfc3afc.png

8. 刷榜

还等什么, 快来刷榜吧!!!挑战米神!

如何更高效的拿分呢?

1. 从数据入手

2. 从算法入手

3. 从参数入手

从算法入手 比如很火的GRPO 很酷是吧,但貌似有些难度。

从数据入手 比如加大训练数据,有些累。

从参数入手 这个ez哈哈

image.png

提交

swift export \

--model /root/paper/config/swift_output/InternLM3-8B-Lora-SFT/v4-20250511-153230/checkpoint-45-merged \

--push_to_hub true \

--hub_model_id 'zhangfc12345678/camp5-2' \

--hub_token '03xx' \

--use_hf false

重新提交表单发现 work了, 都超基线了!

2.png

之前的 conda 管理(过于冗余已更新):

conda create -n xtuner_513 python=3.10 -y
conda activate xtuner_513
pip install torch==2.4.0+cu121 torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121
pip install xtuner timm flash_attn datasets==2.21.0 deepspeed==0.16.1
conda install mpi4py -y

conda create -n xtuner_513 python=3.10 -y
conda activate xtuner_513
pip install torch==2.4.0+cu121 torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121
pip install xtuner timm flash_attn datasets==2.21.0 deepspeed==0.16.1
conda install mpi4py -y
#为了兼容模型,降级transformers版本
pip uninstall transformers -y
pip install transformers==4.48.0 --no-cache-dir -i https://pypi.tuna.tsinghua.edu.cn/simple

评论

user-avatar
  • 木子哦

    木子哦2025.07.22

    干货!

    0