所有分类
主题 主题
平台 平台
我的工作台
userHead
注册时间 [[userInfo.create_time]]
创造力 [[userInfo.creativity]]
[[userInfo.remark]]
[[d.project_title]]
articleThumb
[[d.material_name]]
timelineThumb
进入工作台
折叠
所有分类 我的工作台
展开

【博派】史上最强K210板教程4——物体分类功能

肥罗-阿勇 肥罗-阿勇 2020-12-22 23:28:08
1
0
简单

在很多的K210主板或传感器中都有一个识别20种物体的功能

这20种物体分别是:飞机、自行车、鸟、船、瓶子、巴士、汽车、猫、椅子、牛、餐桌、狗、马、摩托车、人、盆栽植物、羊、沙发、火车、电视。

对应的英文名称分别为:aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable, dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tvmonitor.

其实这是因为采用了物体分类功能训练了一个模型文件(后面的教程会教大家如何自己训练模型),K210调用模型文件即可实现对这20种物体的分类。

在人工智能领域,进行物体分类一般采用CNN算法。

CNN也叫convnet,中文名称为卷积神经网络,是计算机视觉领域常用的一种深度学习模型。

projectImage
projectImage

这里不对CNN做详细说明,感兴趣的同学可以去网上搜索学习。

在卷积神经网络衍生出很多算法,其中比较经典的算法是YOLO算法。

“You Only Look Once”或“YOLO”是一个对象检测算法的名字,这是Redmon等人在2016年的一篇研究论文中命名的。YOLO将对象检测重新定义为一个回归问题。它将单个卷积神经网络(CNN)应用于整个图像,将图像分成网格,并预测每个网格的类概率和边界框。YOLO实现了自动驾驶汽车等前沿技术中使用的实时对象检测。

projectImage

这些我们都不做深入研究,我们只要知道如何应用即可。

下面回到我们之前说的20种物体分类,直接上代码:

记住要先将模型文件复制到TF卡里面。

projectImage

运行结果如下:

projectImage

效果非常不错。动手尝试一下吧。

人脸检测功能和20种物体分类是一样的,只需要更改模型名和锚点参数即可。

projectImage
projectImage
Makelog作者原创文章,未经授权禁止转载。
1
0
评论
[[c.user_name]] [[c.create_time]]
[[c.parent_comment.count]]
|
[[c.comment_content]]